NTNU TGWG Group Seminar [0.2Cm] Teleparallelism with Applications

NTNU TGWG Group Seminar [0.2Cm] Teleparallelism with Applications

Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary NTNU TGWG Group Seminar Teleparallelism with Applications Ling-Wei Luo National Tsing Hua University (NTHU) August 11, 2017@NTNU Ling-Wei Luo TGWG Group Seminar@NTNU 0/ 58 Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary Main References: Teleparallel Conformal Invariant Models Induced by Kaluza-Klein Reduction Chao-Qiang Geng, LWL, published on Class. Quant. Grav. 34 185004 (2017). Kaluza{Klein theory for teleparallel gravity Chao-Qiang Geng, Chang Lai, LWL and Huan Hsin Tseng, published on Phys. Lett. B 737, 248 (2014). Teleparallel gravity in five dimensional theories Chao-Qiang Geng, LWL and Huan Hsin Tseng, published on Class. Quantum Grav. 31 (2014) 185004. Ling-Wei Luo TGWG Group Seminar@NTNU 1/ 58 Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary Outline 1 Teleparallel Gravity 2 Five-Dimensional Geometry 3 Braneworld Scenario 4 Kaluza-Klein Theory 5 Specific Models 6 Weak Field Approximation 7 Summary Ling-Wei Luo TGWG Group Seminar@NTNU 2/ 58 Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary Outline 1 Teleparallel Gravity 2 Five-Dimensional Geometry 3 Braneworld Scenario 4 Kaluza-Klein Theory 5 Specific Models 6 Weak Field Approximation 7 Summary Ling-Wei Luo TGWG Group Seminar@NTNU 2/ 58 Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary Standard Gravity Theory General Relativity Einstein equation 1 G = 8πGT with G := R − Rg µν µν µν µν 2 µν (Einstein, Nov. 25, 1915) Hilbert action −1 Z p d4x −gR + S 2κ m (Hilbert, Nov. 20, 1915) \Spacetime tells matter how to move; matter tells spacetime how to curve." | John Wheeler. Ling-Wei Luo TGWG Group Seminar@NTNU 3/ 58 Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary Alternative Gravitational Theory Riemannian Geometry with Maintaining the Notion of Distant Parallelism (Teleparallelism, Einstein, 1928) Torsion scalar (Einstein, 1929) =) symmetric EoM Equivalent to the Hilbert action (Lanczos, 1929) Generalization: New General Relativity (NGR) 1 1 ; ; −1 −! (a; b; c) 4 2 (Hayashi & Shirafuji, 1979) Ling-Wei Luo TGWG Group Seminar@NTNU 4/ 58 Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary Trajectory of a particle: Frenet-Serret formula 2 Circle on E 3 Helix in E 0 0 1 0 1 p 1 0 ! e1 Be0 C B 0 κC @ 1A = @ A 0 e2 e2 −κ 0 Curvature ∼ Acceleration: 0 0 1 0 1 p 100 0 1 e1 2 0 de d p Be1C B 0 κ 0 C κ = je0 j = 1 = ; B C = B C Be C 1 2 B 0 C B C @ 2A ds ds @e2A @ −κ 0 τ A e3 e0 0 −τ 0 where s = R pdx2 + dy2 is the arc 3 length. τ: torsion =) the trajectory would Osculating plane: spanned by e1 and not lie on the osculating plane. e2. Ling-Wei Luo TGWG Group Seminar@NTNU 5/ 58 Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary Torsion-free: A tangent vector does not rotate when we parallel transport it. (P.371, John Baez and Javier P. Muniain, \Gauge Fields, Knots and Gravity," 1994) Ling-Wei Luo TGWG Group Seminar@NTNU 6/ 58 Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary Cartan's Structure Equations i The infinitesimal translation of a point p: drp = # ⊗ ei j The change of the basis: drei = rei = ! i ⊗ ej. Torsion is associated with the point translation: drp i i j i dr ◦ drp = ( d# + ! j ^ # ) ⊗ ei := T ei = T : The infinitesimal contour integral at a small region D with boundary @D gives I Z Z drp = dr ◦ drp = T : @D D D Curvature is associated with the rotation of the basis vector: drei j j k j dr ◦ drei = ( d! i + ! k ^ ! i ) ⊗ ej := R i ej = Ri : Similarly, I Z Z drei = dr ◦ drei = Ri : @D D D Ling-Wei Luo TGWG Group Seminar@NTNU 7/ 58 Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary Different gravitational theories with geometry (arXiv:9602013[gr-qc]). Ling-Wei Luo TGWG Group Seminar@NTNU 8/ 58 Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary Absolute Parallelism The orthonormal frame in Weitzenb¨ockgeometry T4 i j gµν = ηij e µ e ν with ηij = diag(+1; −1; −1; −1) : Parallel vectors (absolute parallelism) (Cartan, 1922/Eisenhart, 1925) w ν ρ µ ρ ν ρ rei = dx (@ν ei + ei Γ µν )@ρ := dx (rν ei )@ρ = 0 : w ρ ρ i Weitzenb¨ockconnection: Γ µν = ei @ν e µ − !ijµ = 0. σ σ j i Curvature-free R ρµν (Γ) = ei e ρR jµν (!) = 0. w w i i i i i Torsion tensor T µν ≡ Γ νµ − Γ µν = @µe ν − @ν e µ. ρ 1 ρ ρ ρ ρ Contorsion tensor K µν = − 2 (T µν − Tµ ν − Tν µ) = −Kµ ν . ( i i j i i k T = K j ^ # with K j := K jk# ; i i i !e j := ! j − K j the Levi-Civita connection form : Ling-Wei Luo TGWG Group Seminar@NTNU 9/ 58 Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary Teleparallel Equivalent to GR in T4 Decomposition of the Weitzenb¨ockconnection w ρ ρ ρ Γ µν = fµν g + K µν ; Teleparallel Equivalent to GR (GRk or TEGR) in T4 based on the ν the relation (Tµ := T νµ) µ µ R(Γ) = R~(e)+ T − 2 r~ µT = 0 =)− R~(e)= T − 2 r~ µT : Torsion Scalar (Einstein, 1929) 1 1 1 T ≡ T ρ T µν + T ρ T νµ − T ν T σµ = T i S µν 4 µν ρ 2 µν ρ µν σ 2 µν i µν µν µ σν ν σµ νµ Sρ ≡ K ρ + δρ T σ − δρ T σ = −Sρ is superpotential . TEGR action Z 1 4 p STEGR = d x e T (e = −g) : 2κ Ling-Wei Luo TGWG Group Seminar@NTNU 10/ 58 Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary Shortest and Straitest Curves Shortest lines ! geodesic 2 µ ν ρ Z δS d x dx dx S = ds −! + f µ g = 0 dτ 2 νρ dτ dτ µ dxµ Straitest lines ! autoparallel curves for V = dτ µ ρ ? dV µ ν dx Action principle −! + Γ νρV = 0 dτ dτ µ µ µ Symm. part: Γ (νρ) = f(νρ)g + K (νρ) =) torsion involved in! New action principle with torsion (Kleinert & Pelster, 1996) Teleparallelism: Straitest lines ! loxodromic curves (rhumb lines in navigation) Meridians at a constant angle. Path everywhere orthogonal to torsion vector =) Straitest lines = Shortest lines Ling-Wei Luo TGWG Group Seminar@NTNU 11/ 58 Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary Problems with Torsion Curved spacetime or twisted spacetime Coupling with gauge field (violation of Gauge invariance) ? Fµν = @µAν − @ν Aµ −! rµAν − rν Aµ Modified covariant derivative D = d + Γ − K =) Same as GR (Andrade & Pereira, 1997) Equivalent principle: Normal coordinate =) Γ = 0 Only for symmetric connection (Veblen, 1973) First law of thermodynamics violation in f(T ) (Miao, Li, Miao, 2011) Gravity ! Black Hole Thermodynamics (Bardeen, Carter, Hawking 1973) µ µ µ Translational gauge field (ei = δi @µ −! Di = δi rµ + Bi rµ) µ µ µ µ ei or ei = δi + Bi : Local Lorentz violation: only axial vector torsion is invariant. Lagrangian is inv. =) EoM is not inv. (i) Dirac equation is not local Lorentz inv. in T4. (ii) Energy-momentum asymmetry in TEGR Ling-Wei Luo TGWG Group Seminar@NTNU 12/ 58 Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary Coupling of fermion =) chiral anomaly (index theorem) contribution of torsion (?) Gravitational chiral anomaly inGR (Kimura, 1969) 1 2 d ? j = R~ ^ R~ ij = d Ω~ ^ d Ω~ + Ω~ ^ Ω~ ^ Ω~ : A 384 π2 ij 3 Dirac Lagrangian with torsion is NOT Hermitian i i L = e ¯ i γm e µ @ − !~ (e) + K σjk with σjk = [γj ; γk] : D m µ 2 jkµ jkµ 4 | {z } Dµ Dirac equation in U4 i µ 1 i γ ei Dµ − m = 0 with Dµ := Dµ − Tµ : ~ 2 Nieh-Yan term (Nieh & Yan, 1981) i i j i Ti ^ T − Rij ^# ^ # = d Ti ^ # |{z} vanished in teleparallelism Teleparallel SUGRA? Ling-Wei Luo TGWG Group Seminar@NTNU 13/ 58 Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary Applications with Torsion Quasi local energy of GR in teleparallel formulation (Nester,1989) Cosmological magnetic field (magnetogenesis) (Sabbata & Gasperini, 1980) Nonsingular, big-bounce cosmology in Einstein-Cartan-Sciama-Kibble (ECSK) theory (Pop lawski,2012) Born-Infeld type inflation (Ferraro & Fiorini, 2007) r eλ 2T L = 1 + − 1 16πG λ Teleparallel dark energy (Geng, Lee, Saridakis, Wu, 2011) 1 1 µ 2 L = e T + @µφ∂ φ + ξT φ − V (φ) 16πG 2 Ling-Wei Luo TGWG Group Seminar@NTNU 14/ 58 Main References: Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Specific Models Weak Field Approximation Summary Constraints on Torsion? Black hole in teleparallelism Y.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    76 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us