Propagation Constant Γ in Electromagnetics Ang Man Shun 2012-9-26 Reference David Griffiths Introduction to Electrodynamics David M

Propagation Constant Γ in Electromagnetics Ang Man Shun 2012-9-26 Reference David Griffiths Introduction to Electrodynamics David M

Real part and Imaginary Part of the Propagation constant γ in Electromagnetics Ang Man Shun 2012-9-26 Reference David Griffiths Introduction to Electrodynamics David M. Pozar Microwave Engineering 1 Review of some related mathematics 1.1 Square root of z = a + jb The square root of a complex number will appear in propagation constant, here is the general form : r r p r + a r − a γ = a + jb = + j Sgn (b) 2 2 p where r = a2 + b2 (r ) ( r ) r + a r − a Thus , the real part of the complex number γ is , and the imaginary part is Sgn (b) 2 2 Proof. The First Proof, using Rectangular Cooredinate ( p a = x2 − y2 (∗) a + jb = x + jy () a + jb = x2 − y2 + j2xy () b = 2xy (∗∗) Consider a2 + b2 ( ) a2 + b2 = x4 + y4 − 2x2y2 + 4x2y2 = x4 + y4 + 2x2y2 = x2 + y2 2 p ) x2 + y2 = ± a2 + b2 = ±r (∗ ∗ ∗) Since x ; y 2 R p x2 + y2 = + a2 + b2 = +r p (− a2 + b2 is rejected ) Consider (∗) + (∗ ∗ ∗) s p p a + a2 + b2 2x2 = a + a2 + b2 ) x = ± 2 Consider (∗ ∗ ∗) − (∗) s p p −a + a2 + b2 2y2 = −a + a2 + b2 ) y = ± 2 From equation (∗∗) , ( x ; y same sign if b > 0 x ; y different sign if b < 0 1 Thus 8 "r p r p # > 2 2 − 2 2 > a + a + b a + a + b > ± + j if b > 0 <> 2 2 γ = x + jy = > "r p r p # > > a + a2 + b2 −a + a2 + b2 :> ± − j if b < 0 2 2 p Using r = a2 + b2 and sgn(b), "r r # r + a r − a γ = ± + j Sgn (b) 2 2 ± sign is related to the direction / determined by direction so finally r r r + a r − a γ = + j Sgn (b) 2 2 The second proof, using polar coordinate [ ] b p z = a + jb = r exp j tan−1 r = a2 + b2 a [ ] [ ] [ ] p p j b p 1 b p 1 b z = r exp tan−1 = r cos tan−1 + j r sin tan−1 2 a 2 a 2 a ( ) b The sign of b is important , since tan−1 give out a angle, and sin (±θ) = ± sin θ : 8 [ a ] [ ] > p 1 p 1 <> r cos tan−1 b + j r sin tan−1 b b > 0 p 2 a 2 a z = [ ] [ ] > p 1 p 1 :> r cos tan−1 b − j r sin tan−1 b b < 0 2 a 2 a Using Sgn notation on b [ ] [ ] p p 1 b p 1 b z = r cos tan−1 + jSgn(b) r sin tan−1 2 a 2 a Turn sin into cos [ ] s [ ] p 1 b p 1 b = r cos tan−1 + jSgn(b) r 1 − cos2 tan−1 2 a 2 a r cos 2A + 1 Recall, the Double Angle Formula : cos 2A = 2 cos2 A − 1 () cos A = 2 2 v v u ( ) u ( ) u b u b ucos tan−1 + 1 u cos tan−1 + 1 p t a p t a = r + jSgn(b) r 1 − 2 2 v v u ( ) u ( ) u b u b ucos tan−1 + 1 ucos tan−1 − 1 p t a p t a = r + jSgn(b) r 2 2 b a a For tan θ = , cos θ = p = 2 2 a v a + b r v u u u a u a − r r p t + 1 p t 1 a + r a − r = r r + jSgn(b) r r = + jSgn(b) 2 2 2 2 ) r r p r + a r − a γ = a + jb = + j Sgn (b) 2 2 1.2 Curl of Curl r × r × A = r (r · A) − r2A Proof. (This is a proof by brute force, just expand everything from definition) 0 1 x^ y^ z^ *( ) ( ) ( )+ B @ @ @ C @A @A @A @A @A @A r × A = det B C = Z − Y ; X − Z ; Y − X @ @x @y @z A @y @z @z @x @x @y AX AY AZ 0 1 x^ y^ z^ B @ @ @ C r × r × A = det B C @ @x @y @z A r × r × r × ( A)X ( A)Y ( A)Z * ( ) ( ) ( ) + @ (r × A) @ (r × A) @ (r × A) @ (r × A) @ (r × A) @ (r × A) = Z − Y ; X − Z ; Y − X @y @z @z @x @x @y * ( ) ( ) ( ) + @2A @2A @2A @2A @2A @2A @2A @2A @2A @2A @2A @2A = Y − X + Z − X ; Z − Y − Y + X ; X − Z − Z + Y @y@x @y2 @x@z @z2 @z@y @z2 @x2 @x@y @x@z @x2 @y2 @y@z @A @A @A r · A = X + Y + Z @x @y @z * ( ) ( ) ( )+ @ @A @A @A @ @A @A @A @ @A @A @A r (r · A) = X + Y + Z ; X + Y + Z ; X + Y + Z @x @x @y @z @y @x @y @z @z @x @y @z 3 *( ) ( ) ( )+ @2A @2A @2A @2A @2A @2A @2A @2A @2A r (r · A) = X + Y + Z ; X + Y + Z ; X + Y + Z @x2 @x@y @x@z @y@x @y2 @x@z @z@x @z@y @z2 * + ( ) ( ) ( ) 2 2 2 2 r A = r AX ; r AY ; r AZ *( ) ( ) ( )+ @2A @2A @2A @2A @2A @2A @2A @2A @2A = X + X + X ; Y + Y + Y ; Z + Z + Z @x2 @y2 @z2 @x2 @y2 @z2 @x2 @y2 @z2 ) r (r · A) − r2A = *( ) ( ) ( )+ @2A @2A @2A @2A @2A @2A @2A @2A @2A @2A @2A @2A Y + Z − X − X ; X + Z − Y − Y ; X + Y − Z − Z @x@y @x@z @y2 @z2 @y@x @x@z @x2 @z2 @z@x @z@y @x2 @y2 They are equal, thus r × r × A = r (r · A) − r2A 2 The propagation constant in EM wave 2.1 The Wave Equation The Phasor form Maxwell’s Eqautions in source free region 8 > @H < r × E = −µ Faraday’s Law @t > @E : r × H = σE + ϵ Ampère’s circuital law @t The vector identity : curl of curl r × r × A = r (r · A) − r2A Take the curl of both equation 8 ( ) > @E <> r (r · E) − r2E = −µ σE + ϵ ( ) @t( ) > @H @ @H :> r (r · H) − r2H = σ −µ + ϵ −µ @t @t @t With the help of Gauss’s Law (No source) r · E = r · H = 0 The 2 Maxwell’s Equation is now then 8 > @E @2E < r2E = µσ + µϵ @t @t2 Helmholtz Equation > @H @2H : r2H = µσ + µϵ @t @t2 4 Use phasor ( r2E = +j!µσE − !2µϵE = j!µ (σ + j!ϵ) E r2H = +j!µσH − !2µϵH = j!µ (σ + j!ϵ) H p Let γ = j!µ (σ + j!ϵ) ( r2E − γ2E = 0 P hasor Helmholtz Equations r2H − γ2H = 0 2.2 The propagation constant p γ = j!µ (σ + j!ϵ) = α + jβ Recall, r r p r + a r − a γ = a + jb = + jsgn (b) 2 2 Now p p γ = j!µ (σ + j!ϵ) = −!2µϵ + jσ!µ 8 > 2 > a = −! µϵ > > b = σ!µ 2 R+ ) sgn (b) = +1 8 r > r ( ) > p p 2 > r + a > 2 σ > α = Re (γ) = <> r = a2 + b2 = !µ σ2 + !2ϵ2 = ! µϵ 1 + <> " !ϵ # 2 r ( ) r ( ) ) > σ 2 σ 2 > r > 2 − 2 2 − > > r + a = ! µϵ 1 + ! µϵ = ! µϵ 1 + 1 :> r − a > !ϵ " !ϵ # β = Im (γ) = sgn (b) > r ( ) r ( ) 2 > 2 2 > 2 σ 2 2 σ :> r − a = ! µϵ 1 + + ! µϵ = ! µϵ 1 + + 1 !ϵ !ϵ i.e. v " # u r ( ) uµϵ σ 2 α = !t 1 + − 1 2 !ϵ p γ = j!µ (σ + j!ϵ) = α + jβ v " # u r ( ) uµϵ σ 2 β = !t 1 + + 1 2 !ϵ 5 3 The propagation constant in Transmission Line Model 3.1 The Telegrapher Equation & Wave Equation from KCL, KVL The Transmission Line model KVL : @i (z; t) v (z + ∆z; t) − v(z; t) @i (z; t) v(z; t)−R∆z·i (z; t)−L∆z· −v (z + ∆z; t) = 0 ) = −R·i (z; t)−L @t ∆z @t @v (z + ∆z; t) KCL : i(z; t)−G∆z·v (z + ∆z; t)−C∆z· −i (z + ∆z; t) = 0 @t i (z + ∆z; t) − i (z; t) @v (z + ∆z; t) ) = −Gv (z; t)−C ∆z @t 8 > v (z + ∆z; t) − v(z; t) @v(z; t) @i (z; t) > lim = = −Ri (z; t) − L < ∆z!0 ∆z @z @t Shrink segment ∆z ! 0 > :> i (z + ∆z; t) − i (z; t) @v (z; t) lim = −Gv (z; t) − C ∆z!0 ∆z @t 8 > dV (z) − <> = (R + j!L) I(z) Using phasor dz T elegrapher Equation > :> dI(z) = − (G + j!C) V (z) dz d (T elegrapher Equation) : dz 8 8 8 > > 2 > 2 > 2 > d V (z) > d V (z) dI(z) >d V (z) > − γ2V (z) = 0 > = − (R + j!L) > = (R + j!L)(G + j!C) V (z) > dz2 < dz2 dz < dz2 < ! ! > > > d2I(z) >d2I(z) dV (z) > d2I(z) > − γ2I(z) = 0 > = − (G + j!C) > = (G + j!C)(R + j!L) I(z) > 2 : 2 : 2 :> pdz dz dz dz γ= (R + j!L)(G + j!C) 3.2 The propagation constant γ p γ = (R + j!L)(G + j!C) = α + jβ Recall again, r r p r + a r − a γ = a + jb = + jsgn (b) 2 2 6 Now p p γ = (R + j!L)(G + j!C) = (RG − !2LC) + j (!LG + !RC) a = RG − !2LC b = !LG + !RC 2 R+ ) sgn (b) = +1 p q p ) r = a2 + b2 = (RG − !2LC)2 + (!LG + !RC)2 = R2G2 + !4L2C2 + !2L2G2 + !2R2C2 p p = G2 (R2 + !2L2) + C2!2 (!2L2 + R2) = (G2 + C2!2)(R2 + !2L2) 8 8 r > p > r + a > 2 > α = Re (γ) = <> r + a = (G2 + C2!2)(R2 + !2L2) + RG − ! LC <> 2 ) > p > r > r − a = (G2 + C2!2)(R2 + !2L2) − RG + !2LC > r − a : : β = Im (γ) = sgn (b) 2 ) s p RG − !2LC + (G2 + C2!2)(R2 + !2L2) α = p 2 γ = (R + j!L)(G + j!C) = α + jβ s p −RG + !2LC + (G2 + C2!2)(R2 + !2L2) β = 2 − − END 7.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us