The Bernoulli Numbers

The Bernoulli Numbers

The Bernoulli Numbers Savage March 16, 2021 Outline 1 Sm(n) and its History 2 The Bernoulli Method 3 Euler’s Impact and Applications Savage The Bernoulli Numbers Chapter 1 Sm(n) and its History Savage The Bernoulli Numbers Sums of Powers of Integers Definition Let n; m 2 N with n ≥ 1. The sums of powers of integers, denoted Sm(n), is n X m m m m m Sm(n) := k = 1 + 2 + 3 + ··· + n : k=1 *Historically, finding quick ways of computing these sums were initially intriguing. *Applications in physics, engineering, and possibly in scripts for games such as Dota 2. Savage The Bernoulli Numbers Sums of Powers of Integers Example (Forms you may have seen) If m = 0, then n X 0 0 0 0 S0(n) = k = 1 + 2 + ··· + n = n: k=1 If m = 1, then n X n + 1 S (n) = k1 = 1 + 2 + ··· + n = : 1 2 k=1 Savage The Bernoulli Numbers Historical Questions Big Question: Can we find a “nice” formula for the sums of powers of integers? That is, is there a concise way of computing n X m m m m m Sm(n) = k = 1 + 2 + 3 + ··· + n ? k=1 Savage The Bernoulli Numbers Historical Questions Example (Geometric Sums) Let m ≥ 1. Then for b > 0 with b 6= 1, we know that bm − 1 b0 + b1 + b2 + b3 + ··· + bm−1 = b − 1 Savage The Bernoulli Numbers Historical Questions Big Question: Can we find a “nice” formula for the sums of powers of integers? That is, is there a concise way of computing n X m m m m m Sm(n) := k = 1 + 2 + 3 + ··· + n ? k=1 We have know of nice formulas for m = 0 and m = 1, but what if m > 1? Is each formula related somehow or is each independent? Savage The Bernoulli Numbers Historical Questions Example (Related?) We know n + 1 S (n) = n and S (n) = ; 0 1 2 but are these formulas (and others) related somehow? Savage The Bernoulli Numbers History: Archimedes (287-212 BC) of Syracuse, Sicily Our story begins with Archimedes. He is credited with first discovering that n + 1 S (n) = : 1 2 It’s also believed Archimedes also discov- ered a nice formula for S2(n). Savage The Bernoulli Numbers History: Aryabhata (476-550) of Kusumapura?, India Aryabhata was an Indian astronomer. He is credited with discovering a nice formula for S3(n), namely 2 S3(n) = (1 + 2 + ··· + n) : n + 12 n2(n + 1)2 ) S (n) = = 3 2 4 Savage The Bernoulli Numbers History: Abu Ali al-Hassan ibn al Haytham (965-1039) of Basra, Iraq Commonly referred to as Alhazan. Ar- guably discovered that 1 1 1 1 S (n) = n5 − n4 + n3 − n: 4 5 2 3 30 Savage The Bernoulli Numbers History: Thomas Harriot (1560-1621) of Oxford, U.K. and Pierre De Fermat (1601-1665) of Beaumont-de-Lomagne, France Both independently “proved” 1 1 1 1 S (n) = n5 − n4 + n3 − n: 4 5 2 3 30 *Given Sm(n), Fermat developed a recur- sive formula using integration to compute Sm+1(n). Savage The Bernoulli Numbers History: Johann Faulhaber (1580-1635) of Ulm, Germany In 1610, found nice formulas for Sm(n) where 0 ≤ m ≤ 10: In 1631, he published in Academia Algebrae nice formulas for Sm(n) where 0 ≤ m ≤ 23: Savage The Bernoulli Numbers The Faulhaber Method n+1 Given n ≥ 1, let α = S1(n) = 2 . Theorem (Fact - Key Observation) If m ≥ 1 is odd, then Sm(n) can be expressed as rational polynomial in α. Savage The Bernoulli Numbers The Faulhaber Method Example n+1 Given n ≥ 1, let α = 2 . 1 m = 1 ) S1(n) = α. 2 2 2 m = 3 ) S3(n) = (1 + 2 + ··· + n) = α . 3 4 3 1 2 m = 5 ) S5(n) = 3 α − 3 α . 4 m = 13 ) 64 80 656 944 2764 691 S (n) = α7 − α6 + α5 − α4 + α3 − α2: 13 7 3 15 21 105 105 Savage The Bernoulli Numbers The Faulhaber Method Example (Continued) Suppose m = 13 and n = 4. Then 13 13 13 13 S13(4) = 1 + 2 + 3 + 4 = 68; 711; 380 : 4+1 In this case, α = 2 = 10 and 64 80 656 944 2764 691 (10)7 − (10)6 + (10)5 − (10)4 + (10)3 − (10)2 7 3 15 21 105 105 is indeed 68; 711; 380 . Savage The Bernoulli Numbers Chapter 2 The Bernoulli Method Savage The Bernoulli Numbers Jacob Bernoulli (1655-1705) of Basel, Switzerland Effectively used Fermat’s methods to compute Sm(n) for 1 ≤ m ≤ 10: Savage The Bernoulli Numbers Bernoulli’s Sums, b = n − 1 1 2 1 1 S1(b) = 2 n − 2 n 1 3 1 2 1 1 S2(b) = 3 n − 2 n + 6 n 1 4 1 3 1 2 S3(b) = 4 n − 2 n + 4 n 1 5 1 4 1 3 1 1 S4(b) = 5 n − 2 n + 3 n − 30 n 1 6 1 5 5 4 1 2 S5(b) = 6 n − 2 n + 12 n − 12 n 1 7 1 6 1 5 1 3 1 1 S6(b) = 7 n − 2 n + 2 n − 6 n + 42 n 1 8 1 7 7 6 7 4 1 2 S7(b) = 8 n − 2 n + 12 n − 24 n + 12 n 1 9 1 8 2 7 7 5 2 3 1 1 S8(b) = 9 n − 2 n + 3 n − 15 n + 9 n − 30 n 1 10 1 9 3 8 7 6 1 4 3 2 S9(b) = 10 n − 2 n + 4 n − 10 n + 2 n − 20 n Savage The Bernoulli Numbers 1 h 2 1i S1(b) = 2 n − 1n 1 h 3 3 2 1 1i S2(b) = 3 n − 2 n + 2 n 1 h 4 3 2i S3(b) = 4 n − 2n + 1n 1 h 5 5 4 5 3 1 1i S4(b) = 5 n − 2 n + 3 n − 6 n 1 h 6 5 5 4 1 2i S5(b) = 6 n − 3n + 2 n − 2 n 1 h 7 7 6 7 5 7 3 1 1i S6(b) = 7 n − 2 n + 2 n − 6 n + 6 n 1 h 8 7 14 6 7 4 2 2i S7(b) = 8 n − 4n + 3 n − 3 n + 3 n 1 h 9 9 8 7 21 5 3 3 1i S8(b) = 9 n − 2 n + 6n − 5 n + 2n − 10 n 1 h 10 9 15 8 6 4 3 2i S9(b) = 10 n − 5n + 2 n − 7n + 5n − 2 n Savage The Bernoulli Numbers 1 h 2 −1 1i 2 n + (2)( 2 )n 1 h 3 −1 2 1 1i 3 n + (3)( 2 )n + (3)( 6 )n 1 h 4 −1 3 1 2i 4 n + (4)( 2 )n + (6)( 6 )n 1 h 5 −1 4 1 3 −1 1i 5 n + (5)( 2 )n + (10)( 6 )n + (5)( 30 )n 1 h 6 −1 5 1 4 −1 2i 6 n + (6)( 2 )n + (15)( 6 )n + (15)( 30 )n 1 h 7 −1 6 1 5 −1 3 1 1i 7 n + (7)( 2 )n + (21)( 6 )n + (35)( 30 )n + (7)( 42 )n 1 h 8 −1 7 1 6 −1 4 1 2i 8 n + (8)( 2 )n + (28)( 6 )n + (70)( 30 )n + (28)( 42 )n 1 h 9 −1 8 1 7 −1 5 1 3 −1 1i 9 n + (9)( 2 )n + (36)( 6 )n + (126)( 30 )n + (84)( 42 )n + (9)( 30 )n 1 h 10 −1 9 1 8 −1 6 1 4 −1 2i 10 n + (10)( 2 )n + (45)( 6 )n + (210)( 30 )n + (210)( 42 )n + (45)( 30 )n Savage The Bernoulli Numbers 1 h 2 −1 1i 2 1n + (2)( 2 )n 1 h 3 −1 2 1 1i 3 1n + (3)( 2 )n + (3)( 6 )n 1 h 4 −1 3 1 2i 4 1n + (4)( 2 )n + (6)( 6 )n 1 h 5 −1 4 1 3 −1 1i 5 1n + (5)( 2 )n + (10)( 6 )n + (5)( 30 )n 1 h 6 −1 5 1 4 −1 2i 6 1n + (6)( 2 )n + (15)( 6 )n + (15)( 30 )n 1 h 7 −1 6 1 5 −1 3 1 1i 7 1n + (7)( 2 )n + (21)( 6 )n + (35)( 30 )n + (7)( 42 )n 1 h 8 −1 7 1 6 −1 4 1 2i 8 1n + (8)( 2 )n + (28)( 6 )n + (70)( 30 )n + (28)( 42 )n 1 h 9 −1 8 1 7 −1 5 1 3 −1 1i 9 1n + (9)( 2 )n + (36)( 6 )n + (126)( 30 )n + (84)( 42 )n + (9)( 30 )n 1 h 10 −1 9 1 8 −1 6 1 4 −1 2i 10 1n + (10)( 2 )n + (45)( 6 )n + (210)( 30 )n + (210)( 42 )n + (45)( 30 )n Savage The Bernoulli Numbers First six rows Row # n1 n2 n3 n4 n5 n6 n7 (1) 2 1 (2) 3 3 1 (3) 6 4 1 (4) 5 10 5 1 (5) 15 15 6 1 (6) 7 35 21 7 1 *Looks like Pascal’s triangle! *(1655) Savage The Bernoulli Numbers First six rows completed Row # n1 n2 n3 n4 n5 n6 n7 (1) 2 1 (2) 3 3 1 (3) 4 6 4 1 (4) 5 10 10 5 1 (5) 6 15 20 15 6 1 (6) 7 21 35 35 21 7 1 Savage The Bernoulli Numbers Bernoulli Sums with Pascal numbers 1 h 2 −1 1i 2 1n + (2)( 2 )n 1 h 3 −1 2 1 1i 3 1n + (3)( 2 )n + (3)( 6 )n 1 h 4 −1 3 1 2 1i 4 1n + (4)( 2 )n + (6)( 6 )n + (4)(0)n 1 h 5 −1 4 1 3 2 −1 1i 5 1n + (5)( 2 )n + (10)( 6 )n + (10)(0)n + (5)( 30 )n 1 h 6 −1 5 1 4 3 −1 2 1i 6 1n + (6)( 2 )n + (15)( 6 )n + (20)(0)n + (15)( 30 )n + (6)(0)n 1 h 7 −1 6 1 5 4 −1 3 2 1 1i 7 1n + (7)( 2 )n + (21)( 6 )n + (35)(0)n + (35)( 30 )n + (21)(0)n + (7)( 42 )n 1 h 8 −1 7 1 6 5 −1 4 3 1 2 1i 8 1n + (8)( 2 )n + (28)( 6 )n + (56)(0)n + (70)( 30 )n + (56)(0)n + (28)( 42 )n + (8)(0)n 1 h 9 −1 8 1 7 6 −1 5 4 1 3 2 −1 1i 9 1n + (9)( 2 )n + (36)( 6 )n + (84)(0)n + (126)( 30 )n + (126)(0)n + (84)( 42 )n + (36)(0)n + (9)( 30 )n 1 h 10 −1 9 1 8 7 −1 6 5 1 4 3 −1 2 1i 10 1n + (10)( 2 )n + (45)( 6 )n + (120)(0)n + (210)( 30 )n + (252)(0)n + (210)( 42 )n + (120)(0)n + (45)( 30 )n + (10)(0)n *Each red and yellow number is a Pascal number.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    59 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us