Carboxylic Acid Amidases (CAA)

Carboxylic Acid Amidases (CAA)

Development of New Enzyme Activities for Applications in Synthetic Biology: Carboxylic Acid Amidases (CAA) A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy (PhD) in the Faculty of Science and Engineering 2018 Alexander J Wood School of Chemistry Contents Figures .................................................................................................................................... 3 Tables ..................................................................................................................................... 7 List of Abbreviations.............................................................................................................. 8 Abstract ................................................................................................................................ 10 Declaration ........................................................................................................................... 11 Copyright Statement ............................................................................................................ 12 Acknowledgments ................................................................................................................ 13 Chapter 1. Introduction .................................................................................................... 14 1.1. General introduction to amides and their production ............................................ 14 1.2. Chemical methods of amide synthesis and their limitations ................................. 16 1.3. Enzymatic synthesis of amides .............................................................................. 20 1.4. Carboxylic acid reductase...................................................................................... 57 1.5. Objective of the project: Engineer CAR into a broad specificity amide synthetase 63 Chapter 2. Developing a CAR-VibB, VibH fusion enzyme system ................................ 65 2.1. Introduction ........................................................................................................... 65 2.2. Gene analysis and CARmm-VibB fusion design .................................................... 68 2.3. Vib system gene cloning and CARmm A domain-VibB PCP domain fusion ........ 70 2.4. Expression trials of Vib and CARmm-VibB fusion genes ...................................... 72 2.5. Discussion and future work ................................................................................... 79 Chapter 3. Direct amide bond formation using CARs ..................................................... 84 3.1. Introduction ........................................................................................................... 84 3.2. CAR gene expression and enzyme purification .................................................... 85 3.3. CAR dependent amide formation - method development and substrate screen .... 87 3.4. Conclusions ......................................................................................................... 104 Chapter 4. Investigation of the mechanism of CAR-dependent amide synthesis .......... 106 4.1. Introduction ......................................................................................................... 106 4.2. CAR production in the absence of co-produced Sfp ........................................... 106 4.3. CAR mutagenesis and the removal of the phosphopantetheine binding site ...... 108 4.4. Use of truncated CAR for amide formation ........................................................ 109 4.5. Influence of a PPant mimetic on amide formation .............................................. 110 4.6. Investigation of CAR enantioselectivity using chiral amines ............................. 113 4.7. Analysis of adenylation activity using the EnzChek phosphate detection kit ..... 115 2 4.8. Structural modelling of amines into CAR active site .......................................... 119 4.9. Whole-cell CAR-dependent amide formation ..................................................... 123 4.10. Conclusion and future work ............................................................................. 124 Chapter 5. Use of radical substrates for studies of CAR dynamics ............................... 126 5.1. Introduction ......................................................................................................... 126 5.2. Kinetic studies with radical substrates ................................................................ 128 5.3. Discussion and future work ................................................................................. 130 Chapter 6. Discussion of results and perspectives ......................................................... 131 Chapter 7. Experimental procedures .............................................................................. 134 7.1. General methods and materials ........................................................................... 134 7.2. Genes and molecular cloning .............................................................................. 134 7.3. Protein production and purification by nickel affinity chromatography ............. 138 7.4. Biotransformations and analysis ......................................................................... 142 7.5. Investigation of coupling between CAR-dependent ATP consumption and amide formation using an EnzChek kit ..................................................................................... 153 7.6. Enzyme kinetics analysis of native CAR activity with radical-TEMPO carboxylic acid 154 7.7. Structural modelling of piperidine 52 into the active sites of CAR A domain structures ........................................................................................................................ 154 References .......................................................................................................................... 155 Appendices ......................................................................................................................... 166 Appendix 1: Genes used in this work ............................................................................. 166 Appendix 2: PCR primers and PCR conditions ............................................................. 171 Appendix 3: Example enzyme nickel affinity purification, AKTA UV chromatograms ........................................................................................................................................ 173 Appendix 4: Example HPLC traces showing CAR-dependent amide formation. ......... 175 Final Word Count: 44044 Figures Figure 1.1: Examples of amide-containing drugs, including the anti-cancer drug imatinib 1, the antibiotic cefpiramide 2 and the sleeping disorder drug modafinil 3. ............................ 14 3 Figure 1.2: Use of coupling or activating reagents to form amides from carboxylic acids and amines. ........................................................................................................................... 18 Figure 1.3: Exploitation of the serine protease catalytic mechanism for amide formation. 22 Figure 1.4: Overcoming the natural substrate specificity of proteases through the use of substrate mimetics for amide formation. .............................................................................. 24 Figure 1.5: Selected examples of amide products produced by the lipases CALB and PPL respectively. ......................................................................................................................... 26 Figure 1.6: Synthesis of aminoacyl-tRNAs by aminoacyl tRNA synthetase. ..................... 28 Figure 1.7: Module and domain composition of the NRPS tyrocidine synthetase. ............. 31 Figure 1.8: Conformational changes of the C-terminal subdomain of A domains permit adenylation or thiolation. ..................................................................................................... 33 Figure 1.9: PCP domain and C domain functions within NRPS enzyme complexes. ......... 38 Figure 1.10: A proposed mechanism of C domain-catalysed amide formation. .................. 39 Figure 1.11: Subdomain swapping in NRPS systems allows the production of novel peptides. ............................................................................................................................... 42 Figure 1.12: Module shuffling within the tyrocidine synthetase system to produce novel peptides. ............................................................................................................................... 44 Figure 1.13: Domain shuffling between the bacitracin synthetase and tyrocidine synthetase systems for novel dipeptide formation. ................................................................................ 45 Figure 1.14: Model proposed for ATP-grasp enzyme-catalysed amide formation .............. 47 Figure 1.15: Exploiting the wide substrate breadth of ATP-Grasp enzymes YwfE and PGM1 ................................................................................................................................... 49 Figure 1.16: Amide synthesis by the amide synthetase McbA. ........................................... 52 Figure 1.17: Amide synthesis by the adenylate forming amide ligases NovL and CouL .... 52 Figure 1.18: An overview of enzymatic methods of amide formation ................................ 56 Figure 1.19: Carboxylic acid reductase reaction and domain composition and

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    179 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us