开都河流域径流对气候变化的响应研究 张一驰1 , 李宝林1 , 程维明1 ,张学仁2 (11 中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室 ,北京 100101 ; 21 新疆塔里木河流域管理局科研信息所 ,库尔勒 841000)

开都河流域径流对气候变化的响应研究 张一驰1 , 李宝林1 , 程维明1 ,张学仁2 (11 中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室 ,北京 100101 ; 21 新疆塔里木河流域管理局科研信息所 ,库尔勒 841000)

26 卷第 6 期 资 源 科 学 Vol. 26 ,No. 6 2004 年 11 月 RESOURCES SCIENCE Nov. ,2004 开都河流域径流对气候变化的响应研究 张一驰1 , 李宝林1 , 程维明1 ,张学仁2 (11 中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室 ,北京 100101 ; 21 新疆塔里木河流域管理局科研信息所 ,库尔勒 841000) 摘要 :开都河属塔里木河的源流之一 ,随着塔里木河流域近期综合治理的深入进行 ,开都河径流变化 对气候的响应关系已逐渐成为国内外科学家关注的热点问题之一。鉴于此目的 ,该文采用经典的 Mann2 Kendall 和 Mann2Whitney 检验方法 ,利用该流域巴音布鲁克气象站和大山口水文站 1958~2002 年的实测资 料 ,分析对比了气温 、降雨和径流序列变化特征 。结果表明 :除春季外 ,其他季节的年径流基本表现为 1958 ~1973 年偏丰 、1974 年~1986 年偏枯和 1987 年~2000 年偏丰 ,并在 1987 年~2000 年间表现为显著上升的 趋势 ;年平均气温经历了高2低2高三阶段 ,其中夏季气温总体呈上升趋势 ;降雨的空间差异性明显 ,上游年 降雨量 1973 后跳变减少 ,其中夏季降雨量于 1977 年~1988 年间为多年最小值 ;中游夏季降雨量 1987 年后 跳变增加。以径流自身的特征变化为时段划分基础 ,对比了径流 、降雨和气温变化过程 ,研究表明 :夏季年 际降雨与气温变化是引起夏 、秋、冬季径流变化的根本原因 ;其中年降雨变化对径流变化起主导作用 ,夏季 气温变化导致的冰川融水变化对径流具有一定调节作用 ,70 年代~80 年代冰川融水减少使径流减少幅度 大于降水减少幅度 ,而 90 年代冰川融水增加使径流增加幅度大于降水增加幅度。 关键词 :开都河 ; 径流变化 ; 气候变化 ; 响应 中图分类号 :P461 + 15(45KDHLY) 文献标识码 :A 文章编号 :1007 - 7588(2004) 06 - 0069 - 08 气候变化对径流过程的影响是全球变化研究的重要部分 ,气候变化将导致水分循环的变化 ,引起 水资源在时空上的重新分布和水资源数量的改变 ,进而影响生态环境和社会经济的发展。开都河作 为天山南坡水量最丰富的河流之一 ,既是新疆巴音郭愣蒙古自治州生态环境建设、农业灌溉、发电、排 污和地下水补给的主要水源 ,又是博斯腾湖天然调节水库的源泉。大山口水文站上游山区为开都河 产流区 ,该地区除放牧外并无其他显著的人类活动 ,因此径流年月变化主要由山区气候变化引起 ,研 究和了解气候变化对开都河径流变化影响规律 ,对合理开发利用水资源进行地区工农业生产发展和 生态环境保护具有重大的理论意义和现实意义。然而 ,目前有关开都河径流多年变化特征及成因的 具体研究还很缺乏。在夏德康对巴州河流枯水特征和规律分析中、李燕对新疆河流洪水变化研究中 ~ 以及吴素芬对新疆河流径流量 30 年变化研究中[1 3] ,虽都对开都河径流特征有所提及 ,但研究重点 在于揭示新疆径流的总体特征 ,对径流变化的原因分析也是从区域气候条件出发 ,并未得出开都河径 流与气温变化之间的准确响应关系。周聿超[4] 、李宇安等[5] 对开都河的研究中 ,分别探讨了径流多年 平均特征和 3 个典型年份的径流特征 ,而并未对开都河径流多年变化过程进行研究。 在较大时空尺度上或资料缺乏情况下 ,常通过对比不同时段径流、降雨和气温等特征值的变化来 分析径流对气候变化的响应规律。对于时段划分 ,多数研究中以 10 年为一时段 ,进行 60 、70 和 80 等 各年代之间自然要素平均值的对比[2 ,7 ,11] ,其缺陷在于 :自然要素不会以固定的时间间隔发生变化 ,以 10 年为间隔的主观性时段变化分析不符合客观规律 ,在此基础上进行的其它分析也就值得商榷。显 收稿日期 :2004 - 08 - 20 ;修订日期 :2004 - 09 - 29 基金项目 :国家自然科学基金项目(编号 :40101028) ;中国科学院地理科学与资源研究所知识创新项目 (编号 :CXI0G2D02202) ; 世 界银行合作项目(编号 :THSD27) 。 作者简介 :张一驰(1978~ ) ,男 ,山西省文水县人 ,博士生 ,主要从事地理信息系统应用研究。 © 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. 07 资 源 科 学 26 卷第 6 期 然 ,合理的时段划分应依据自然要素的变化 ,以特征变化点作为时段分界点。时间序列分析是研究自 然要素特征值变化的常用方法。单一序列分析通过对序列结构特征的识别揭示某一自然现象的变化 ~ 规律 ,主要包括趋势特征分析、周期识别和自相关分析、丰枯水划分[6 8] ,以及在此基础上的时间序列 建模等[9] 。其中序列趋势分析用于把握自然要素变化发展的总体特征 ,又不易受次要或偶然因素影 响 ,而得到广泛应用[10 ,11] 。对于不同时段自然要素变化对比 ,常采用序列相关分析、要素特征平均值 对比、序列结构特征对比和回归分析等多序列分析方法[12~15] 。故本文利用开都河大山口水文站和巴 音布鲁克气象站 1958 年~2002 年的实测资料 ,采用目前经典的 Mann2Kendall 和 Mann2Whitney 检验方 法 ,对开都河多年来的降雨、气温和径流进行趋势分析 ;利用各要素的特征变化来进行时段划分 ,探讨 趋势变化特征分析的新方法 ;通过对比不同时段开都河流域三要素之间的变化关系 ,分析和探讨径流 对气候变化的响应 ,为进一步模拟和预测气候变化与水文过程之间的响应关系提供基础。 1 研究区概况 开都河流域位于新疆天山南坡焉耆盆地北缘 ,介于 82°58′~86°55′E、41°47′~43°21′N 之间。其发 源于天山中部海拔 5 000 米的萨尔明山的哈尔尕特和扎克斯台沟 ,主流自东向西经小尤尔都斯盆地 至巴音布鲁克水文站 ,而后折转东南 ,经大尤尔都斯盆地至呼斯台西里 ,再经峡谷段至大山口水文站 后流出山口。从河源至呼斯台西里为开都河上游 ( I 区) ,之后至出山口为中游 ( II 区)(图 1) 。出山口 以上流域集水面积 19 012km2 ,山区流域平均海拔 3 100m。流域总地势是北面高 ,南面低 ,高山、峡谷 和盆地交错 ,地形复杂。开都河属雪冰融水和雨水混合补给为主的河流 :4 月随气温升高 ,季节性积 雪融化补给河流 ;进入夏季 ,高山冰川融水和降雨补给河流。流域山区降雨丰富 ,诸河源冰川积雪主 要集中分布在海拔4 000m~4 500m的艾尔宾、依连哈比尔尕、科克铁克和那拉提等山脉。 开都河出山口水文站 1972 年前为拜尔基站 ,之后上移至大山口 ,由于两站距离很近 ,文中将两站 实测径流资料直接合并使用。流域内具有长期完整气象观测资料的测站只有巴音布鲁克站和大山口 站 (表 1) 。巴音布鲁克站位于开都河上游中心位置 ,其资料可反映流域上游气候状况 ,由于上游地域 开阔而地势平缓 ,因此降雨和气温变化都对径流产生较大影响。流域中游区为狭窄河谷 ,坡降较大、 水流湍急 ,影响径流的主要因素为降雨 ,采用大山 口处实测降雨来代表该区域面降雨。测站及研究 资料如表 1 所示 : 2 分析方法与技术路线 单调趋势 (monotonic trends) 和跳跃趋势 ( step trends) ,后者也称突变分析 ,是序列趋势的两种基 本形式 , 对二者进行识别是趋势分析的主要内 容[16] 。在众多趋势分析方法中 ,非参数统计方法 Mann2Kendall 检验和 Mann2Whitney 检验是应用最 广泛的两种方法 ,分别用于单调趋势和跳跃趋势 图 1 开都河流域示意 Fig. 1 Position of the Kaidu Catchment ~ 检验[11 ,16 18] 。两者的优点在于对数据要求较少 , 表 测站资料信息 数据偏离正态性不会对结果产生很大影响 ,且易 1 (km2) 于处理具有季节周期的数据[19 ,20] 。 Table 1 Data Information of field stations 测站 东经 北纬 集水面积 资料类型 资料年限 2. 1 Mann2Kendall 检验 巴音布鲁克 84°08′43°01′ 6 833 气温、降雨 1958~2000 将序列 xi ( i = 1 ,2 , ⋯, n) 看作是一组按顺序 大山口 85°44′42°13′ 19 022 流量、降雨 1958~2002 抽得的样本 , Fi ( x) 为样本 xi 的分布函数 ,则在 © 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. 26 卷第 6 期 张一驰等 :开都河流域径流对气候变化的响应研究 17 Mann2Kendall 假设检验中 , H0 ∶Fi ( x) = ⋯= Fn ( x) ,即 xi ( i = 1 ,22 , ⋯, n) 为独立同分布随机样本 ; H1 ∶ Fi ( x) > ⋯> Fn ( x) 或 H1 ∶Fi ( x) < ⋯< Fn ( x) ,即序列存在趋势。在零假设下 ,当 n ≥10 时 ,统计量 θ n- 1 n 1 > 0 其中 θ θ S = ∑∑sgn( xk - xj ) , sgn( ) = 0 = 0 (1) i = 1 k = i +1 - 1 θ < 0 近似服从正态分布 ,该统计量的期望和方差分别为 : n ( n - 1) (2 n + 5) E[ S ] = 0 var[ S ] = 18 将 S 标准化得到 : S - 1 S > 0 Var( S) Zc = 0 S = 0 (2) S + 1 Var( S) S < 0 在双边检验中 ,当 - Z1 - αP2 ≤Zc ≤Z1 - αP2 时 ,接受零假定 H0 ;否则 , Zc < - Z1 - αP2 表明序列有显著下降趋 势 , Zc > Z1 - αP2 表明序列有显著上升趋势 。α是显著性水平 。 2. 2 Mann2Whitney 检验 设序列 xi ( i = 1 ,2 , ⋯, n) 存在变异点 ,在 Mann2Whitney 假设检验中 ,将该变异点前后的子序列看 作两个样本 Yi ( i = 1 , ⋯, m) 和 Zi ( i = 1 , ⋯, k) ,有 m + k = n ,分布函数分别为 F1 ( x) 和 F2 ( x) ,则 H0 : F1 ( x) = F2 ( x) ; H1 ∶F1 ( x) > F2 ( x) 或 H1 < F1 ( x) < F2 ( x) 。假设统计量构造如下 :将样本 Yi 和 Zi 合并 ,并从小到大排序 ,初步确定所有数值的秩 ,对于连续相同的数值 ,用他们秩的平均值代替各 自的秩 ;然后用 Ri ( i = 1 , ⋯, m) 纪录 Yi 在整个合并样本中的秩 ,得到 T = ∑Ri ,由此可计算统计量 : m ( m + 1) U = mk + - T (3) 2 当 m , k 都小于 10 时 ,可查表直接得到上下临界值 Z1 和 Z2 ,若 Z2 < U < Z1 ,则接受零假设 ,认为 两者间无差异 ;当 m , k 之一大于 10 时 , U 近似服从正态分布 ,可计算 U 的期望和方差为 : mk mk ( m + k + 1) E( U) = Var( U) = 2 12 将 U 标准化得 Zu ,在双边检验中 ,当 - Z1 - αP2 ≤Zu ≤Z1 - αP2 时 ,接受零假定 H0 ,α为显著性水平。 2. 3 趋势分析及时段划分 进行跳跃趋势识别 ,理论上需要对所有可能的相邻成对子序列进行检验 ,但在跳变次数不确定 时 ,这样做无疑是费时费力的。同时 ,如果某子序列本身存在单调趋势 ,进行其与相邻子序列的跳跃 分析并不合理。因此 ,为快速准确识别各要素序列中存在的趋势特征 ,并在此基础上进行时段划分 , 本文首先通过目视分析确定可能的序列分割点 ,在此基础上进行序列趋势特征分析 ,具体步骤如下 : ①各序列对时间进行多项式回归拟合 ,以显著性检验 (F) 和残差独立性检验 (Durbin2Watson) 为标准确 定回归方程 ; ②结合 5 年滑动平均曲线 ,在回归曲线上选择拐点 ,以此点为界初步将序列分为多个 子序列 ; ③采用 Mann2Kendall 检验对各子序列进行单调趋势识别 ;如果相临两子序列都不存在单调 趋势 ,则采用 Mann2Whitney 检验对两者间是否存在跳跃进行识别 ;如果跳跃趋势也不存在 ,则将两子 序列合二为一 ; ④对步骤 3 中通过合并产生的新序列重复步骤 3 ,进行单调趋势检验和与相邻序列 的阶跃趋势检验。通过上述步骤最终得到的各子序列即对应自然要素发展变化的不同时段。 © 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. 27 资 源 科 学 26 卷第 6 期 3 开都河流域降雨、气温和径流变化特征分析 开都河径流在春季主要由季节性融雪补给 ,而在夏季为降雨和高山冰雪融水补给 ,两者间具有较 明显的时间界限。因此除对年径流、气温和降雨变化进行分析外 ,还需对季节径流多年变化及原因进 行研究。考虑到大山口站 12 月~3 月径流量都很接近 ,从 4 月开始才有较大增加 ,故文中以 4 月~5 月为春季 ,6 月~8 月为夏季 ,9 月~11 月为秋季 ,12 月~3 月为冬季。 3. 1 开都河径流变化特征 对开都河大山口站 45 年、季节平均流量序列进行趋势分析 ,显著性水平取α= 0105 ,序列平稳的 接受域为 ( - 1196 ,1196) 。计算结果表明 (表 2) :春季径流多年保持稳定 ;夏、秋、冬三季径流及年径流 则经历了先减少后增加的相似过程 :1958 年~1973 年 (1974 年) 年间水量偏丰 , 1974 年 (1975 年) ~ 1986 年 (1987 年) 年间水量偏枯 ,1987 年 (1988 年) ~2002 年间水量偏丰 ;在前两个时段中都不存在单 调趋势 ,而在 1987 年~2002 年间表现出显著上升趋势。 表 2 大山口站流量序列趋势分析及时段划分结果 Table 2 Trend analysis and period partition for discharge series of Dashankou station 序列 时段 1 MK 均值 时段 2 MK 均值 时段 3 MK 均值 MW122 MW223 冬季 58274 - 0178 4715 75287 - 0106 4116 88202 4146 5714 - 3127 — 春季 58202 1135 12511 — — — — — — — — 夏季 58273 0132 20415 74286 - 0185 16117 87202 2107 22416 - 3111 — 秋季 58275 - 0145 9513 76289 - 0138 8015 90202 3148 10313 - 2196 — 年均 58273 0132 11217 74286 - 0155 9411 87202 2129 12213 - 3133 — 3. 2 流域降雨变化特征 对巴音布鲁克站 43 年、季节降雨序列趋势分析表明 (表 3) :夏季降雨在 1977~1988 年间较前期 有所减少 ,1989 年之后又有显著增加 ,其它季节降雨多年变化较稳定 ;年降雨在 1973 年后较前期显著 减少。对大山口站 45 年、季节降雨序列趋势分析表明 (表 4) :夏季降雨量在 1987 年后跳变增加 ,其他 季节降水多年无明显变化 ;年降雨量在 1987 年后跳变增加。 对比两测站降雨特征 ,可看到明显的流域降雨空间差异性 : ①巴音布鲁克站各季降雨量都明显 高于同期大山口站降雨量 ; ②两站都仅夏季降雨具有显著时段差异性 ,但巴音布鲁克站处降水序列 具有三时段特征 ,而大山口站降水序列为两时段特征 ; ③虽然两站年降雨序列都具有两时段特征 , 表 3 巴音布鲁克站降雨序列趋势分析及时段划分结果 Table 3 Trend analysis and period partition for precipitation series of Bayinbuluke station 序列 时段 1 MK 均值 时段 2 MK 均值 时段 3 MK 均值 MW122 MW223 春季 58200 - 1105 38120 — — — — — — — — 夏季 58276 - 0177 198140 77288 0189 148150 89200 0121 209120 - 3165 - 2194 秋季 58200 - 0154 34110 — — — — — — — — 冬季 58200 1124 13160 — — — — — — — — 年总 58272 - 0120 291160 73200 1160 263170 — — — - 2124 — 表 4 大山口站降雨序列趋势分析及时段划分结果 Table 4 Trend analysis and period partition for precipitation series of Dashankou station 序列 时段 1 MK 均值 时段 2 MK 均值 MW122 MW223 春季 58202 1173 20170 — — — — — 夏季 58286 - 1142 61130 87202 1112 86120 - 2178 — 秋季 58202 1124 15130 — — — — — 冬季 58202 0128 5127 — — — — — 年总 58286 - 0145 97100 87202 0100 137190 - 3196 — © 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. 26 卷第 6 期 张一驰等 :开都河流域径流对气候变化的响应研究 37 但发生跳变的年份并不一致 ,分别为 1973 年和 1987 年 ,且巴音布鲁克处是跳变减少 ,大山口处为跳 变增加。 3. 3 流域气温变化特征 对巴音布鲁克站 43 年、季节平均气温序列趋势分析表明 (表 5) :夏季气温在 1977 年后较前期有 明显提升 ,其它三季平均气温多年变化都较平稳。年均气温最终表现为 1975 年~1988 年间相对前后 期的显著低温。 表 5 巴音布鲁克站气温序列趋势分析及时段划分结果 Table 5 Trend analysis and period partition for temperature series of Bayinbuluke station 序列 时段 1 MK 均值 时段 2 MK 均值 时段 3 MK 均值 MW122 MW223 春季 58200 0138 2183 — — — — — — — — 夏季 58276 1147 9139 77200 1156 10104 — — — - 4100 — 秋季 58200 0192 - 2169 — — — — — — — — 冬季 58200 - 1121 - 20140 — — — — — — — — 年均 58274 1144 - 4136 75288 - 1164 - 5107 89200 - 0134 - 4127 - 2148 - 2103 3. 4 开都河径流变化原因分析 前文对径流和气候的变化分 析表明 ,流域气温、降雨变化都发 生在夏季 ,其他季节的气候条件近 45 年来都比较稳定。因此 , 夏季 气候变化是开都河径流变化的根 本原因。对比年径流、气温和降雨 趋势分析结果 (图 2) ,径流和气温 变化的 3 个阶段在发生时间上有 很好的对应关系 ,巴音布鲁克和大 山口降雨序列虽都只有两个阶段 , 但各自变异点位置与径流、气温序 列的两个变异点位置都很接近。 对于巴音布鲁克降雨 ,虽然 Mann2 Whitney 检验表明 1974 年 ~ 1986 年与 1987 年~2000 年间降雨差异 不显著 ,但从图中降雨序列与平均 值的对比来看 ,87 年之后降雨要 图 2 年降雨 、气温和流量趋势 图 3 夏季降雨 、气温和流量趋势 高于前期。同样 ,夏季径流、气温 Fig. 2 Tends of yearly precipitation , Fig. 3 Tends of precipitation ,temperature 和降雨序列尽管随时间变化过程 temperature and discharge series and discharge in summer 表 相邻阶段水文气象要素的平均值变化 上不完全一致 但变异点位置也都 6 , Table 6 The average change of hydrological and meteorological 比较接近 (图 3) 。这些充分表明 elements between neighboring stage 夏季流域降雨和气温变化是开都 径流 % 降雨 % 气温 ℃ 夏季 时段 1~时段 2 - 2119 - 2113 0145 河径流变化的主导因素。 时段 2~时段 3 3213 3012 0125 为进一步区分径流变化中降 秋季 时段 1~时段 2 - 1915 912 - 0103 时段 2~时段 3 2415 - 1019 0136 雨和气温的作用 ,对相邻时段间三 年 时段 1~时段 2 - 1615 - 1312 - 0154 者的变化量进行对比 (表 6) 。流 时段 2~时段 3 2415 1613 0148 域平均降雨量按面积加权平均得 注 :表中采用径流的时段划分方式 © 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. 47 资 源 科 学 26 卷第 6 期 到 : f I P1 + FII P2 P = (4) f I + f II 式中 : f I ,f II 分别为图 1 中流域上游和中游面积 , P1 、P2 为巴音布鲁克站和大山口站实测降雨量。 开都河夏季 (6 月~8 月) 径流为降雨和冰川融水补给 ,其中 7 、8 月是冰川消融最强烈的时期。从 表 6 可看到 ,一方面 ,相邻时段间径流变化量与降雨变化量非常接近

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us