The Symplectic Geometry of Symmetric Products and Invariants of 3-Manifolds with Boundary

The Symplectic Geometry of Symmetric Products and Invariants of 3-Manifolds with Boundary

The symplectic geometry of symmetric products and invariants of 3-manifolds with boundary Denis Auroux UC Berkeley AMS Invited Address – Joint Mathematics Meetings New Orleans, January 2011 builds on work of: R. Lipshitz, P. Ozsv´ath, D. Thurston; T. Perutz, Y. Lekili M. Abouzaid, P. Seidel; S. Ma’u, K. Wehrheim, C. Woodward Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 1 / 13 Low-dimensional topology Goal: find invariants to distinguish smooth manifolds Dimensions 3 and 4 hardest (Poincar´econjecture, . ) Exotic smooth 4-manifolds (homeomorphic, not diffeomorphic) Smooth 3- and 4-manifold invariants (beyond algebraic topology) 80’s Donaldson invariants 90’s Seiberg-Witten invariants increasingly computable and versatile 00’s Ozsv´ath-Szab´oinvariants ? These all associate numerical invariants to closed 4-manifolds, and (graded) abelian groups to closed 3-manifolds. But the story goes further! Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 2 / 13 Heegaard-Floer TQFT Ozsv´ath-Szab´o(2000) Y 3 closed à HF (Y ) abelian group (Heegaard-Floer homology) 4 à W cobordismc (∂W = Y2 −Y1) FW : HF (Y1) → HF (Y2) (and more) b c c Extend to surfaces and 3-manifolds with boundary? Σ surface à category C(Σ)? Y 3 with boundary ∂Y = Σ Ã object C(Y ) ∈ C(Σ)? cobordism ∂Y = Σ2 −Σ1 à functor C(Σ1) → C(Σ2)? Want: HF (Y1 ∪Σ Y2)= homC(Σ)(C(Y1), C(Y2)) (pairing theorem) This can bec done in 2 equivalent ways: bordered Heegaard-Floer homology (Lipshitz-Ozsv´ath-Thurston 2008, more computable), or geometry of Lagrangian correspondences (Lekili-Perutz 2010, more conceptual). Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 3 / 13 Plan of the talk Heegaard-Floer homology Background: Floer homology, Fukaya categories, correspondences The Lekili-Perutz approach: correspondences from cobordisms The Fukaya category of the symmetric product The Lipshitz-Ozsv´ath-Thurston strands algebra Modules and bimodules from bordered 3-manifolds Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 4 / 13 Heegaard-Floer homology Y 3 closed 3-manifold admits a Heegaard Hβ splitting into two handlebodies Y = Hα ∪Σ¯ Hβ. This is encoded by a Heegaard diagram (Σ¯, α1 . αg , β1 . βg ). (g = genus(Σ))¯ β β 1 g Hα z Σ¯ α1 αg unordered g-tuples of points on punctured Σ g Let Tα = α1 × · · · × αg , Tβ = β1 × · · · × βg ⊂ Sym (Σ¯ \ z) Theorem (Ozsv´ath-Szab´o, ∼ 2000) HF (Y ) := HF (Tβ, Tα) is independent of chosen Heegaard diagram. c (Floer homology: complex generated by Tα ∩ Tβ = g-tuples of intersections between α and β curves, differential counts holomorphic curves). Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 5 / 13 Floer homology and Fukaya categories Σ Riemann surface à M = Symg (Σ) symplectic manifold (monotone) Products of disjoint loops/arcs (e.g. Tα = α1 × · · · × αg ) are Lagrangian. Floer homology = Lagrangian intersection theory, corrected by holomorphic discs to ensure deformation invariance. ′ Z ′ Floer complex CF (L, L )= x∈L∩L′ 2 x (assuming L, L transverse) ′ differential ∂ : CF (L, L′) →LCF (L, L′) L coeff. of y in ∂x counts holomorphic strips y x L HF (L, L′) = Ker ∂/Im ∂. g (For product Lagrangians Tα, Tβ ⊂ Sym (Σ), intersections = tuples of αi ∩ βσ(i); g holom. curves in Sym (Σ) can be seen on Σ. So HF = HF (Tβ, Tα) fairly easy) ∗ Fukaya category F(M): objects = Lagrangian submanifoldsc (closed) ′ ′ (monotone, balanced) hom(L, L ) = CF (L, L ) with differential ∂ y ′′ ′ composition CF (L, L′) ⊗ CF (L′, L′′) → CF (L, L′′) L L coeff. of z in x · y counts holom. triangles z x L Denismore Auroux (A (UC∞ Berkeley)-category) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 6 / 13 Lagrangian correspondences; the Lekili-Perutz TQFT L Lagrangian correspondences M1 −→ M2 = Lagrangian submanifolds L ⊂ (M1 ×M2, – ω1 ⊕ω2). These generalize symplectomorphisms (but need not be single-valued); should map Lagrangians to Lagrangians. “Generalized Lagrangians” = formal images of Lagrangians under sequences of correspondences; Floer theory extends well. à extended Fukaya cat. F #(M) (Ma’u-Wehrheim-Woodward). L # # Correspondences M1 −→ M2 induce functors F (M1) → F (M2). Heegaard-Floer TQFT Σ (punctured) surface à category C(Σ) = F #(Symg (Σ)) 3 Y with boundary ∂Y = Σ Ã object TY : (generalized) Lagrangian g submanifold of Sym (Σ) (for a handlebody, TY = product torus) cobordism ∂Y = Σ2 −Σ1 à functor induced by (generalized) Lagr. k1 k2 correspondence TY : Sym (Σ1) −→ Sym (Σ2). T T Pairing theorem: HF (Y1 ∪Σ Y2) ≃ HF ( Y1 , −Y2 ). Denis Auroux (UC Berkeley) cSymmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 7 / 13 Lekili-Perutz: correspondences from cobordisms Σ− = Σ0 Perutz: Elementary cobordism Y12 :Σ1 à Σ2 Y =⇒ Lagrangian correspondence 01 k k+1 T12 ⊂ Sym (Σ1) × Sym (Σ2) (k ≥ 0) Σ1 (roughly: k points on Σ1 → “same” k points on Σ2 Y12 plus one point anywhere on γ) γ Lekili-Perutz: decompose Y 3 into sequence of Σ2 elementary cobordisms Yi,i+1, compose all Ti,i+1 T . to get a generalized correspondence Y . k− k+ TY : Sym (Σ−)→Sym (Σ+) (∂Y =Σ+ −Σ−) Σ+ Theorem (Lekili-Perutz) TY is independent of decomposition of Y into elementary cobordisms. 3 View Y (sutured: ∂Y =Σ+ ∪ Σ−) as cobordism of surfaces w. boundary 2 For a handlebody (as cobordism D à Σg ), TY ≃ product torus 3 3 2 2 # Y closed, Y \ B : D à D , then TY ≃ HF (Y ) ∈ F (pt)=Vect Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariantsc JMM, New Orleans, Jan. 2011 8 / 13 Lekili-Perutz vs. bordered Heegaard-Floer The extended Fukaya category F #(Symg (Σ)) and the generalized 3 Lagrangians TY (for Y with ∂Y = Σ) constructed by Lekili-Perutz are not very explicit at first glance... unlike Bordered Heegaard-Floer homology (Lipshitz-Ozsv´ath-Thurston 2008) Σ (decorated) surface à (cat. of modules over) dg-algebra A(Σ, g) 3 Y with ∂Y = Σ Ã CFA(Y ) (right A∞) module over A(Σ, g) pairing: HF (Y1 ∪Σ Y2d) ≃ hommod-A(CFA(−Y2), CFA(Y1)) In fact, by consideringc specific product Lagrangiansd ind Symg (Σ) one gets: Theorem F #(Symg (Σ)) embeds fully faithfully into mod-A(Σ, g) 3 Given Y with ∂Y = Σ, the embedding maps TY to CFA(Y ) d Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 9 / 13 The Lipshitz-Ozsv´ath-Thurston strands algebra A(Σ, g) Describe Σ by a pointed matched circle: segment with 4g points carrying labels 1,..., 2g, 1,..., 2g (= how to build Σ = D2 ∪ 2g 1-handles) A(Σ, g) is generated (over Z2) by g-tuples of {upward strands, pairs of horizontal dotted lines} s.t. the g source labels (resp. target labels) in {1,..., 2g} are all distinct. Example (g = 2) q q q q q q q q q q 4 q q 4 4 q q 4 4 q q 4 4 q q 4 4 q q 4 3 q q 3 3 q q 3 3 q q 3 3 q q 3 3 q q 3 2 q q 2 ∂ 2 q q 2 2 q q 2 2 q q 2 2 q q 2 1 1 → 1 1 1 1 1 1 → 1 1 4 q q 4 4 q q 4 4 q q 4 4 q q 4 4 q q 4 3 q q 3 3 q q 3 3 q q 3 3 q q 3 3 q q 3 2 q q 2 2 q q 2 2 q q 2 2 q q 2 2 q q 2 1 q q 1 1 q q 1 1 q q 1 1 q q 1 1 q q 1 {1, 2} → {2, 4} Differential: sum all ways of smoothing one crossing. Product: concatenation (end points mustq match). q q q q q q q q q q q q q q Treat as + and set q = 0. Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 10 / 13 The extended Fukaya category vs. A(Σ, g) Theorem # g F (Sym (Σ)) embeds fully faithfully into mod-A(Σ, g) (A∞-modules) Main tool: partially wrapped Fukaya cat. F #(Symg (Σ), z) (z ∈∂Σ) Enlarge F #: add noncompact objects = products of disjoint properly embedded arcs. Roughly, hom(L0, L1) := CF (L˜0, L˜1), deforming all arcs so that end points of L˜0 lie above those of L˜1 (without crossing z). Similarly, product is defined by perturbing so that L˜0 > L˜1 > L˜2. (after Abouzaid-Seidel) z (s ⊆ {1...2g}, |s| = g). α2g Let Ds = αi Then: iQ∈s α1 1. hom(Ds , Dt ) ≃A(Σ, g) s,t L # g 2. the objects Ds generate F (Sym (Σ), z) Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 11 / 13 Yoneda embedding and A∞-modules 3 2 # g Recall: Y , ∂Y = Σ ∪ D ⇒ gen. Lagr. TY ∈ F (Sym Σ) (Lekili-Perutz) T T T Yoneda embedding: Y → Y( Y )= s hom( Y , Ds ) right A∞-module overL s,t hom(Ds , Dt ) ≃A(Σ, g). L In fact, Y(TY ) ≃ CFA(Y ) (bordered Heegaard-Floer module) 2 Pairing theorem: ifdY = Y1 ∪ Y2, ∂Y1 = −∂Y2 = Σ ∪ D , then T T T T CF (Y ) ≃ homF # ( Y1 , −Y2 ) ≃ hommod-A(Y( −Y2 ), Y( Y1 )). also:c (using A(−Σ, g) ≃A(Σ, g)op) T T T T CF (Y ) ≃ Y1 ◦ Y2 ≃ Y( Y1 ) ⊗A Y( Y2 ).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    15 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us