
The symplectic geometry of symmetric products and invariants of 3-manifolds with boundary Denis Auroux UC Berkeley AMS Invited Address – Joint Mathematics Meetings New Orleans, January 2011 builds on work of: R. Lipshitz, P. Ozsv´ath, D. Thurston; T. Perutz, Y. Lekili M. Abouzaid, P. Seidel; S. Ma’u, K. Wehrheim, C. Woodward Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 1 / 13 Low-dimensional topology Goal: find invariants to distinguish smooth manifolds Dimensions 3 and 4 hardest (Poincar´econjecture, . ) Exotic smooth 4-manifolds (homeomorphic, not diffeomorphic) Smooth 3- and 4-manifold invariants (beyond algebraic topology) 80’s Donaldson invariants 90’s Seiberg-Witten invariants increasingly computable and versatile 00’s Ozsv´ath-Szab´oinvariants ? These all associate numerical invariants to closed 4-manifolds, and (graded) abelian groups to closed 3-manifolds. But the story goes further! Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 2 / 13 Heegaard-Floer TQFT Ozsv´ath-Szab´o(2000) Y 3 closed à HF (Y ) abelian group (Heegaard-Floer homology) 4 à W cobordismc (∂W = Y2 −Y1) FW : HF (Y1) → HF (Y2) (and more) b c c Extend to surfaces and 3-manifolds with boundary? Σ surface à category C(Σ)? Y 3 with boundary ∂Y = Σ Ã object C(Y ) ∈ C(Σ)? cobordism ∂Y = Σ2 −Σ1 à functor C(Σ1) → C(Σ2)? Want: HF (Y1 ∪Σ Y2)= homC(Σ)(C(Y1), C(Y2)) (pairing theorem) This can bec done in 2 equivalent ways: bordered Heegaard-Floer homology (Lipshitz-Ozsv´ath-Thurston 2008, more computable), or geometry of Lagrangian correspondences (Lekili-Perutz 2010, more conceptual). Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 3 / 13 Plan of the talk Heegaard-Floer homology Background: Floer homology, Fukaya categories, correspondences The Lekili-Perutz approach: correspondences from cobordisms The Fukaya category of the symmetric product The Lipshitz-Ozsv´ath-Thurston strands algebra Modules and bimodules from bordered 3-manifolds Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 4 / 13 Heegaard-Floer homology Y 3 closed 3-manifold admits a Heegaard Hβ splitting into two handlebodies Y = Hα ∪Σ¯ Hβ. This is encoded by a Heegaard diagram (Σ¯, α1 . αg , β1 . βg ). (g = genus(Σ))¯ β β 1 g Hα z Σ¯ α1 αg unordered g-tuples of points on punctured Σ g Let Tα = α1 × · · · × αg , Tβ = β1 × · · · × βg ⊂ Sym (Σ¯ \ z) Theorem (Ozsv´ath-Szab´o, ∼ 2000) HF (Y ) := HF (Tβ, Tα) is independent of chosen Heegaard diagram. c (Floer homology: complex generated by Tα ∩ Tβ = g-tuples of intersections between α and β curves, differential counts holomorphic curves). Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 5 / 13 Floer homology and Fukaya categories Σ Riemann surface à M = Symg (Σ) symplectic manifold (monotone) Products of disjoint loops/arcs (e.g. Tα = α1 × · · · × αg ) are Lagrangian. Floer homology = Lagrangian intersection theory, corrected by holomorphic discs to ensure deformation invariance. ′ Z ′ Floer complex CF (L, L )= x∈L∩L′ 2 x (assuming L, L transverse) ′ differential ∂ : CF (L, L′) →LCF (L, L′) L coeff. of y in ∂x counts holomorphic strips y x L HF (L, L′) = Ker ∂/Im ∂. g (For product Lagrangians Tα, Tβ ⊂ Sym (Σ), intersections = tuples of αi ∩ βσ(i); g holom. curves in Sym (Σ) can be seen on Σ. So HF = HF (Tβ, Tα) fairly easy) ∗ Fukaya category F(M): objects = Lagrangian submanifoldsc (closed) ′ ′ (monotone, balanced) hom(L, L ) = CF (L, L ) with differential ∂ y ′′ ′ composition CF (L, L′) ⊗ CF (L′, L′′) → CF (L, L′′) L L coeff. of z in x · y counts holom. triangles z x L Denismore Auroux (A (UC∞ Berkeley)-category) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 6 / 13 Lagrangian correspondences; the Lekili-Perutz TQFT L Lagrangian correspondences M1 −→ M2 = Lagrangian submanifolds L ⊂ (M1 ×M2, – ω1 ⊕ω2). These generalize symplectomorphisms (but need not be single-valued); should map Lagrangians to Lagrangians. “Generalized Lagrangians” = formal images of Lagrangians under sequences of correspondences; Floer theory extends well. à extended Fukaya cat. F #(M) (Ma’u-Wehrheim-Woodward). L # # Correspondences M1 −→ M2 induce functors F (M1) → F (M2). Heegaard-Floer TQFT Σ (punctured) surface à category C(Σ) = F #(Symg (Σ)) 3 Y with boundary ∂Y = Σ Ã object TY : (generalized) Lagrangian g submanifold of Sym (Σ) (for a handlebody, TY = product torus) cobordism ∂Y = Σ2 −Σ1 à functor induced by (generalized) Lagr. k1 k2 correspondence TY : Sym (Σ1) −→ Sym (Σ2). T T Pairing theorem: HF (Y1 ∪Σ Y2) ≃ HF ( Y1 , −Y2 ). Denis Auroux (UC Berkeley) cSymmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 7 / 13 Lekili-Perutz: correspondences from cobordisms Σ− = Σ0 Perutz: Elementary cobordism Y12 :Σ1 à Σ2 Y =⇒ Lagrangian correspondence 01 k k+1 T12 ⊂ Sym (Σ1) × Sym (Σ2) (k ≥ 0) Σ1 (roughly: k points on Σ1 → “same” k points on Σ2 Y12 plus one point anywhere on γ) γ Lekili-Perutz: decompose Y 3 into sequence of Σ2 elementary cobordisms Yi,i+1, compose all Ti,i+1 T . to get a generalized correspondence Y . k− k+ TY : Sym (Σ−)→Sym (Σ+) (∂Y =Σ+ −Σ−) Σ+ Theorem (Lekili-Perutz) TY is independent of decomposition of Y into elementary cobordisms. 3 View Y (sutured: ∂Y =Σ+ ∪ Σ−) as cobordism of surfaces w. boundary 2 For a handlebody (as cobordism D à Σg ), TY ≃ product torus 3 3 2 2 # Y closed, Y \ B : D à D , then TY ≃ HF (Y ) ∈ F (pt)=Vect Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariantsc JMM, New Orleans, Jan. 2011 8 / 13 Lekili-Perutz vs. bordered Heegaard-Floer The extended Fukaya category F #(Symg (Σ)) and the generalized 3 Lagrangians TY (for Y with ∂Y = Σ) constructed by Lekili-Perutz are not very explicit at first glance... unlike Bordered Heegaard-Floer homology (Lipshitz-Ozsv´ath-Thurston 2008) Σ (decorated) surface à (cat. of modules over) dg-algebra A(Σ, g) 3 Y with ∂Y = Σ Ã CFA(Y ) (right A∞) module over A(Σ, g) pairing: HF (Y1 ∪Σ Y2d) ≃ hommod-A(CFA(−Y2), CFA(Y1)) In fact, by consideringc specific product Lagrangiansd ind Symg (Σ) one gets: Theorem F #(Symg (Σ)) embeds fully faithfully into mod-A(Σ, g) 3 Given Y with ∂Y = Σ, the embedding maps TY to CFA(Y ) d Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 9 / 13 The Lipshitz-Ozsv´ath-Thurston strands algebra A(Σ, g) Describe Σ by a pointed matched circle: segment with 4g points carrying labels 1,..., 2g, 1,..., 2g (= how to build Σ = D2 ∪ 2g 1-handles) A(Σ, g) is generated (over Z2) by g-tuples of {upward strands, pairs of horizontal dotted lines} s.t. the g source labels (resp. target labels) in {1,..., 2g} are all distinct. Example (g = 2) q q q q q q q q q q 4 q q 4 4 q q 4 4 q q 4 4 q q 4 4 q q 4 3 q q 3 3 q q 3 3 q q 3 3 q q 3 3 q q 3 2 q q 2 ∂ 2 q q 2 2 q q 2 2 q q 2 2 q q 2 1 1 → 1 1 1 1 1 1 → 1 1 4 q q 4 4 q q 4 4 q q 4 4 q q 4 4 q q 4 3 q q 3 3 q q 3 3 q q 3 3 q q 3 3 q q 3 2 q q 2 2 q q 2 2 q q 2 2 q q 2 2 q q 2 1 q q 1 1 q q 1 1 q q 1 1 q q 1 1 q q 1 {1, 2} → {2, 4} Differential: sum all ways of smoothing one crossing. Product: concatenation (end points mustq match). q q q q q q q q q q q q q q Treat as + and set q = 0. Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 10 / 13 The extended Fukaya category vs. A(Σ, g) Theorem # g F (Sym (Σ)) embeds fully faithfully into mod-A(Σ, g) (A∞-modules) Main tool: partially wrapped Fukaya cat. F #(Symg (Σ), z) (z ∈∂Σ) Enlarge F #: add noncompact objects = products of disjoint properly embedded arcs. Roughly, hom(L0, L1) := CF (L˜0, L˜1), deforming all arcs so that end points of L˜0 lie above those of L˜1 (without crossing z). Similarly, product is defined by perturbing so that L˜0 > L˜1 > L˜2. (after Abouzaid-Seidel) z (s ⊆ {1...2g}, |s| = g). α2g Let Ds = αi Then: iQ∈s α1 1. hom(Ds , Dt ) ≃A(Σ, g) s,t L # g 2. the objects Ds generate F (Sym (Σ), z) Denis Auroux (UC Berkeley) Symmetric products & 3-manifold invariants JMM, New Orleans, Jan. 2011 11 / 13 Yoneda embedding and A∞-modules 3 2 # g Recall: Y , ∂Y = Σ ∪ D ⇒ gen. Lagr. TY ∈ F (Sym Σ) (Lekili-Perutz) T T T Yoneda embedding: Y → Y( Y )= s hom( Y , Ds ) right A∞-module overL s,t hom(Ds , Dt ) ≃A(Σ, g). L In fact, Y(TY ) ≃ CFA(Y ) (bordered Heegaard-Floer module) 2 Pairing theorem: ifdY = Y1 ∪ Y2, ∂Y1 = −∂Y2 = Σ ∪ D , then T T T T CF (Y ) ≃ homF # ( Y1 , −Y2 ) ≃ hommod-A(Y( −Y2 ), Y( Y1 )). also:c (using A(−Σ, g) ≃A(Σ, g)op) T T T T CF (Y ) ≃ Y1 ◦ Y2 ≃ Y( Y1 ) ⊗A Y( Y2 ).
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages15 Page
-
File Size-