Nucleosynthesis of Heavy Elements in Supernovae and Neutron-Star Mergers

Nucleosynthesis of Heavy Elements in Supernovae and Neutron-Star Mergers

Nucleosynthesis of heavy elements in supernovae and neutron-star mergers Almudena Arcones The very metal-deficient star Oldest observed stars HE 0107-5240 Silver Eu Gold Elemental abundances in: - ultra metal-poor stars and - solar system ‣Robust r-process for 56<Z<83 ‣Scatter for lighter heavy elements, Z~40 How many “r-processes” contribute to solar system and UMP stars abundances? Sneden, Cowan, Gallino 2008 The r-process: what do we know? • Solar system: residual r-process r-process peaks and path → fast neutron capture • Astrophysical environment: explosive and high neutron density • UMP stars: robust process from 2nd to 3rd peak contribution from other process(es) below 2nd peak • Chemical evolution: r-process does not occur in every core-collapse supernovae The r-process: what do we know? • Solar system: residual r-process r-process peaks and path → fast neutron capture • Astrophysical environment: explosive and high neutron density • UMP stars: robust process from 2nd to 3rd peak contribution from other process(es) below 2nd peak • Chemical evolution: r-process does not occur in every core-collapse supernovae What do we need to know better? • Astrophysical site(s) • Nuclear physics Where does the r-process occur? Core-collapse supernovae Neutron star mergers Neutron stars Cas A (Chandra X-Ray observatory) Neutron-star merger simulation (S. Rosswog) •neutrino-driven winds (Woosley et al. 1994,…) •dynamic ejecta •jets (Winteler et al. 2012) •neutrino-driven winds •evaporation disk •shocked surface layers (Ning, Qian, Meyer 2007) •neutrino-induced in He shell (Banerjee, Haxton, Qian 2011) (Lattimer & Schramm 1974, Freiburghaus et al. 1999, ....) Neutrino-driven winds neutrons and protons form α-particles α-particles recombine into seed nuclei NSE → charged particle reactions / α-process → r-process weak r-process T = 10 - 8 GK 8 - 2 GK νp-process T < 3 GK for a review see Arcones & Thielemann (2013) Which elements are produced in neutrino winds? Arcones et al 2007 ❒ mass element Radius [cm] Shock Reverse shock Neutron star time [s] Which elements are produced in neutrino winds? Arcones et al 2007 Silver no r-process ❒ mass element Radius [cm] Shock Reverse shock Neutron star time [s] Lighter heavy elements in neutrino-driven winds νp-process weak r-process proton rich neutron rich observations Honda et al. 2006 Observation pattern reproduced! Overproduction at A=90, magic neutron number N=50 (Hoffman et al. 1996) suggests: Production of p-nuclei only a fraction of neutron-rich ejecta (Wanajo et al. 2011) Arcones & Montes (2011) C.J. Hansen, Montes, Arcones (2014) Lighter heavy elements in neutrino-driven winds νp-process weak r-process proton rich neutron rich observations Sr Sr 5 Overproduction at A=90, magic neutron1 0Observation.66 pattern reproduced! − 0.49 − 0.65 6 − 0number.48 N=50 (Hoffman et al. 1996) suggests:2 0.64 7 − 0Production.63 of p-nuclei − 0only.47 a fraction of neutron-rich ejecta 0.62 8 3 − (Wanajo et al. 2011) − 0.61 9 0.46 0.60 − 4 10 0.45 − Ye 0.59 Ye 0.58 (Arcones &− Montes, 2011) 11 0.44 5 0.57 − − 0.56 12 0.43 6 0.55 − − 0.54 13 0.42 − 7 0.53 14 0.41 − 0.52 − 0.51 15 0.40 8 40 50 60 70 80 90 100 110 − 40 50 60 70 80 90 100 110 − Entropy [kB/nuc] Entropy [kB/nuc] Arcones & Bliss (2014) Lighter heavy elements: Sr - Ag Ultra metal-poor stars with high and low enrichment of heavy r-process nuclei suggest: at least two components or sites (Qian & Wasserburg): Are Honda-like stars the outcome of one nucleosynthesis event or the combination of several? ε ε log log or Z Z Travaglio et al. 2004: solar=r-process+s-process+LEPP Montes et al. 2007: solar LEPP ~ UMP LEPP → unique Nucleosynthesis components Abundance of many UMP stars can be explained by two components: Component abundance pattern: YH and YL Fit abundance as combination of components: Y (Z)=(C Y (Z)+C Y (Z)) 10[Fe/H] calc H H L L · 1 0 L-componentLEPP ∈ -1 H-componentr-process log -2 Fit -3 χ2 = 3.98 0 ∈ BS16089-013 -1 log -2 χ2 = 0.15 -3 35 40 45 50 55 60 65 70 75 Atomic number C.J. Hansen, Montes, Arcones (2014) L-component in neutrino-driven winds observations observations observations Sr/Ag Sr/Zr Observations point to proton-rich conditions Sr/Y Nuclear physics uncertainties? Key reactions: weak r-process 2 10− (α,n) baseline Ye =0.45 3 10− λ 10 for Z =10 30 (α,n) · − 4 λ(α,n) 0.1forZ =10 30 10− · − 5 10− 6 10− abundance 7 10− 8 10− 9 10− baseline Ye =0.45 3 10− λ 10 for Z =30 40 (α,n) · − 4 λ(α,n) 0.1forZ =30 40 10− · − 5 10− 6 10− abundance 7 10− 8 10− 9 10− 10 15 20 25 30 35 40 45 50 55 Bliss, Arcones, Montes, Pereira (in prep.) Z Origin of elements from Sr to Ag Astrophysical site Observations ν wind Chemical evolution [Sr/Fe] Nucleosynthesis: Hansen et al. 2013 identify key reactions [Fe/H] Neutron star mergers Ejecta from three regions: • dynamical ejecta • neutrino-driven wind • disk evaporation disk evaporation Rosswog 2013 Neutron star mergers: robust r-process 1.2M 1.4M 1.4M 1.4M 2M 1.4M − − − Right conditions for a successful r-process (Lattimer & Schramm 1974, Freiburghaus et al. 1999) nucleosynthesis of dynamical ejecta robust r-process: - extreme neutron-rich conditions (Ye =0.04) - several fission cycles Korobkin, Rosswog, Arcones, Winteler (2012) see also Bauswein, Goriely, and Janka Hotokezaka, Kiuchi, Kyutoku, Sekiguchi, Shibata, Tanaka, Wanajo Ramirez-Ruiz, Roberts, ... Neutron star mergers: robust r-process 1.2M 1.4M 1.4M 1.4M 2M 1.4M − − − Right conditions for a successful r-process (Lattimer & Schramm 1974, Freiburghaus et al. 1999) nucleosynthesis of dynamical ejecta robust r-process: - extreme neutron-rich conditions (Ye =0.04) - several fission cycles Korobkin, Rosswog, Arcones, Winteler (2012) see also Bauswein, Goriely, and Janka Hotokezaka, Kiuchi, Kyutoku, Sekiguchi, Shibata, Tanaka, Wanajo Ramirez-Ruiz, Roberts, ... Neutron star mergers: neutrino-driven wind 3D simulations after merger Perego et al. (2014) disk and neutrino-wind evolution neutrino emission and absorption Nucleosynthesis: 17 000 tracers 4 3 2 1 Martin et al. (2015) see also Fernandez & Metzger 2013, Metzger & Fernandez 2014, Just et al. 2014, Sekiguchi et al. Neutron star mergers: neutrino-driven wind Martin et al. (2015) Neutron star mergers: neutrino-driven wind Martin et al. (2015) Time and angle dependency Black hole formation determines time for wind nucleosynthesis (Fernandez & Metzger 2013, Kasen et al. 2015) Early times: low Ye: heavy elements Late times: Ye ~0.35: lighter heavy elements angle dependency Martin et al. (2015) Time and angle dependency Black hole formation determines time for wind nucleosynthesis (Fernandez & Metzger 2013, Kasen et al. 2015) Early times: low Ye: heavy elements Late times: Ye ~0.35: lighter heavy elements angle dependency Martin et al. (2015) Wind and dynamic ejecta Wind ejecta complement dynamic ejecta Complete mixing: solar system abundances and UMP stars dynamical ejecta disk ejecta Martin et al. (2015) Wind and dynamic ejecta Wind ejecta complement dynamic ejecta Complete mixing: solar system abundances and UMP stars Partial mixing: Honda-like star? dynamical ejecta disk ejecta Martin et al. (2015) Nuclear physics input nuclear masses, beta decay, reaction rates (neutron capture), fission Erler et al. (2012) Impact of nuclear masses • Different mass models e.g., Wanajo et al. 2004 Farouqi et al. 2010, Arcones & Martinez-Pinedo 2011 Goriely et al. 2013 Mendoza-Temis et al. 2015 Meng-Ru Wu talk • Sensitivity studies Monte Carlo: all masses ± 1MeV Mumpower, Surman et al. 2015, 2016 Nuclear masses: systematic uncertainty Abundances based on density functional theory - six sets of different parametrisation (Erler et al. 2012) - two realistic astrophysical scenarios: jet-like sn and neutron star mergers Martin, Arcones, Nazarewicz, Olsen (2016) First systematic uncertainty band for r-process abundances Uncertainty band depends on A, in contrast to homogeneous band for all A e.g., Mumpower et al. 2015 Can we link masses to r-process abundances? Two neutron separation energy Nucleosynthesis path at constant Sn: (n,γ)-(γ,n) equilibrium Neutron capture Beta decay S2n/2 = 1.5 MeV Martin, Arcones, Nazarewicz, Olsen (2016) Two neutron separation energy Nucleosynthesis path at constant Sn: (n,γ)-(γ,n) equilibrium Neutron capture Beta decay S2n/2 = 1.5 MeV Martin, Arcones, Nazarewicz, Olsen (2016) Two neutron separation energy: abundances freeze-out abundances before decay Martin, Arcones, Nazarewicz, Olsen (2016) Two neutron separation energy: abundances freeze-out abundances before decay → final abundances neutron capture during decay (Surmann & Engel 2001, Arcones & Martinez-Pinedo 2011) Martin, Arcones, Nazarewicz, Olsen (2016) Two neutron separation energy: abundances freeze-out abundances before decay → final abundances neutron capture during decay (Surmann & Engel 2001, Arcones & Martinez-Pinedo 2011) Martin, Arcones, Nazarewicz, Olsen (2016) Conclusions How many r-processes? How many astrophysical sites? lighter heavy elements (Sr-Y-Zr-...-Ag): neutrino-driven winds heavy r-process: mergers: dynamical, wind, disk evaporation jet-like supernovae Needs Improved supernova and merger simulations: EoS, neutrino rates Neutron-rich nuclei: experiments with radioactive beams, theory Observations: oldest stars, kilo/macronovae, neutrinos, gravitational waves, ... Chemical evolution models .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us