Theory of Evolutionary Computation

Theory of Evolutionary Computation

Tutorial on Evolutionary Techniques and Fuzzy Logic in Power Systems Prepared for the IEEE-PES Summer Meeting in Seattle July, 2000 Course Coordinator: Mohamed A. El-Sharkawi, University of Washington Contributors: Chapter 1: Theory of Evolutionary Computation Russel Eberhart, Purdue School of Engineering and Technology, Indiana University Purdue University Indianapolis Chapter 2: An Introduction to Fuzzy Inference Robert J. Marks, University of Washington Chapter 3: Application of Evolutionary Technique to Power System Security Assessment Craig Jensen, Microsoft Corporation M. A. El-Sharkawi, University of Washington Robert J. Marks, University of Washington Chapter 4: Application of EC to Optimization, Model Identification, Training and Control Alexandre P. Alves da Silva, Federal Engineering School at Itajuba, Brazil Chapter 5: Fuzzy Systems Applications to Power Systems Kevin Tomsovic, Washington State University Evolutionary Techniques and Fuzzy Logic in Power Systems Table of Contents Chapter 1: Theory of Evolutionary Computation .......................................................................................... 4 1.1 Introduction.......................................................................................................................................... 4 1.2 EC Paradigm Attributes ....................................................................................................................... 4 1.3 Implementation .................................................................................................................................... 4 1.4 Genetic Algorithms.............................................................................................................................. 5 1.4.1 Introduction................................................................................................................................... 5 1.4.2 An Overview of Genetic Algorithms ............................................................................................ 5 1.4.3 A Simple GA Example Problem................................................................................................... 6 1.4.4 A Review of GA Operations......................................................................................................... 8 1.5 Particle Swarm Optimization............................................................................................................. 11 1.5.1 Introduction................................................................................................................................. 11 1.5.2 Simulating Social Behavior ........................................................................................................ 12 1.5.3 The Particle Swarm Optimization Concept................................................................................. 13 1.5.4 Training a Multilayer Perceptron................................................................................................ 13 1.6 Conclusions........................................................................................................................................ 15 1.7 Acknowledgments.............................................................................................................................. 16 1.8 Selected Bibliography........................................................................................................................ 16 Chapter 2: An Introduction to Fuzzy Inference ............................................................................................ 19 2.1 Fuzzy Sets.......................................................................................................................................... 19 2.2 Differences Between Fuzzy Membership Functions and Probability Density Functions .................. 19 2.3 Fuzzy Logic ....................................................................................................................................... 21 2.3.1 Fuzzy If-Then Rules ................................................................................................................... 22 2.3.2 Numerical Interpretation of the Fuzzy Antecedent ..................................................................... 22 2.3.3 Matrix Descriptions of Fuzzy Rules ........................................................................................... 24 2.4 Application to Control ....................................................................................................................... 24 2.5 Variations........................................................................................................................................... 25 2.5.1 Alternate Fuzzy Logic................................................................................................................. 25 2.5.2 Defuzzification............................................................................................................................ 25 2.5.3 Weighting Consequents .............................................................................................................. 26 2.6 Further Reading ................................................................................................................................. 26 Chapter 3: Application of Evolutionary Technique to Power System Security Assessment ........................ 27 3.1 Abstract.............................................................................................................................................. 27 3.2 Introduction........................................................................................................................................ 27 3.3 NN's for DSA..................................................................................................................................... 28 3.4 Evolutionary-Based Query Learning Algorithm................................................................................28 3.5 Case Study – IEEE 17 Generator System .......................................................................................... 29 3.6 Conclusions........................................................................................................................................ 30 3.7 References.......................................................................................................................................... 30 Chapter 4: Application of EC to Optimization, Model Identification, Training and Control ....................... 32 4.1 Optimization ...................................................................................................................................... 32 4.1.1 Modern Heuristic Search Techniques .......................................................................................... 32 4.1.2 Power System Applications ........................................................................................................ 33 4.1.3 Example ...................................................................................................................................... 34 4.2 MODEL IDENTIFICATION ............................................................................................................ 34 4.2.1 Dynamic Load Modeling ............................................................................................................ 35 4.2.2 Short-Term Load Forecasting ..................................................................................................... 35 4.3 TRAINING ........................................................................................................................................ 36 4.3.1 Pruning Versus Growing............................................................................................................. 36 4.3.2 Types of Approximation Functions ............................................................................................ 37 4.3.3 The Polynomial Network............................................................................................................ 37 4.4 CONTROL......................................................................................................................................... 38 4.5 ACKNOWLEDGMENTS ................................................................................................................. 38 4.6 REFERENCES .................................................................................................................................. 38 Chapter 5: Fuzzy Systems Applications to Power Systems..........................................................................41 5.1 Introduction........................................................................................................................................ 41 5.2 Power System Applications ............................................................................................................... 42 5.2.1 Rule-based Fuzzy Systems.......................................................................................................... 42 5.2.2 Fuzzy Controllers........................................................................................................................ 43 5.2.3 Fuzzy Decision-Making and Optimization ................................................................................. 43 5.3 Basics of Fuzzy Mathematics ...........................................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    54 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us