Euler-Maclaurin and Euler-Boole Formulas

Euler-Maclaurin and Euler-Boole Formulas

Appendix A Euler-MacLaurin and Euler-Boole Formulas A.1 A Taylor Formula The classical Taylor formula Z Xm xk x .x t/m f .x/ D @kf .0/ C @mC1f .t/dt kŠ 0 mŠ kD0 xk can be generalized if we replace the polynomial kŠ by other polynomials (Viskov 1988; Bourbaki 1959). Definition If is a linear form on C0.R/ such that .1/ D 1,wedefinethe polynomials .Pn/ by: P0 D 1 @Pn D Pn1 , .Pn/ D 0 for n 1 P . / k The Generating Function k0 Pk x z We have formally X X X k k k @x. Pk.x/z / D Pk1.x/z D z. Pk.x/z / k0 k1 k0 © Springer International Publishing AG 2017 175 B. Candelpergher, Ramanujan Summation of Divergent Series, Lecture Notes in Mathematics 2185, DOI 10.1007/978-3-319-63630-6 176 A Euler-MacLaurin and Euler-Boole Formulas thus X k xz Pk.x/z D C.z/e k0 To evaluate C.z/ we use the notation x for and by definition of .Pn/ we can write X X k k x. Pk.x/z / D x.Pk.x//z D 1 k0 k0 X k xz xz x. Pk.x/z / D x.C.z/e / D C.z/x.e / k0 1 this gives C.z/ D xz . Thus the generating function of the sequence .Pn/ is x.e / X n xz Pn.x/z D e =M.z/ n xz where the function M is defined by M.z/ D x.e /: Examples P xn n xz . / .0/; . / . / 1; . / (1) f D f Pn x D nŠ , M z D n0 Pn x z D e R 1 R 1 Bn.x/ zx 1 z . / . / . / . / . 1/ (2) f D 0 f t dt , Pn x D nŠ , M z D 0 e dx D z e X B .x/ zexz n zn D nŠ ez 1 n0 The Bn.x/ are the Bernoulli polynomials and the Bn D Bn.0/ the Bernoulli numbers. With the generating function we verify that B0 D 1, B1 D1=2, n B2nC1 D 0 if n 1, Bn.1 x/ D .1/ Bn.x/. / . / 1 . .0/ .1// . / En x (3) f D 2 f C f , Pn x D nŠ X E .x/ 2exz n zn D nŠ ez C 1 n0 The En.x/ are the Euler polynomials and we set En D En.0/. With the generating function we verify that E0 D 1; E1 D1=2 if n 1, n En.1 x/ D .1/ En.x/. A.2 The Euler-MacLaurin Formula 177 The Taylor Formula Let f be a function in C1.R/,thenwehave Z x f .x/ D f . y/ C @P1.x C y t/@f .t/dt y and by integration by parts we get for every m 1 Xm k k f .x/ D f . y/ C .Pk.x/@ f . y/ Pk. y/@ f .x// kD1 Z x mC1 C Pm.x C y t/@ f .t/dt y Applying to this function as a function of y gives a general Taylor formula: for every m 0 Z Xm x k mC1 f .x/ D y.@ f . y//Pk.x/ C y. Pm.x C y t/@ f .t/dt/ kD0 y A.2 The Euler-MacLaurin Formula We can transform the Taylor formula to get a summation formula. Taking x D 0 we get Z Xm y k mC1 f .0/ D y.@ f . y//Pk.0/ y. Pm. y t/@ f .t/dt/ 0 kD0 R 1 In the case of W f 7! 0 f .t/dt we have Z Z Xm 1 y . / Bk k1 1 Bm y t mC1 f .0/ D @ f 0 . @ f .t/dt/dy kŠ 0 0 mŠ kD0 Replacing m by 2m and with B1 D1=2 and B2kC1 D 0,weget Z 1 1 Xm B2k 2k1 1 f .0/ D f .t/dt C . f .0/ f .1// C @ f 0 0 2 .2k/Š kD1 Z Z 1 y B2 . y t/ . m @2mC1f .t/dt/dy 0 0 .2m/Š 178 A Euler-MacLaurin and Euler-Boole Formulas The last integral can easily be evaluated by Fubini’s theorem, we get Z 1 1 Xm B2k 2k1 1 f .0/ D f .t/dt C . f .0/ f .1// C @ f 0 0 2 .2k/Š kD1 Z 1 B2 C1.t/ C m @2mC1f .t/dt 0 .2m C 1/Š Let j be a positive integer, by replacing f by x 7! f . j C x/ in the last formula, we have Z jC1 Xm 1 B2 C1 f . j/ D f .t/dt C . f . j/ f . j C 1// C k @2k1f j 2 .2k/Š j j kD1 Z jC1 b2 C1.t/ C m @2mC1f .t/dt j .2m C 1/Š where b2mC1.t/ D B2mC1.t Œt/. Summing these relations for j from 1 to n 1; we get for f 2 C1.0; 1Œ/ the Euler-MacLaurin formula Z n f .1/ C f .n/ f .1/ C :::C f .n/ D f .x/dx C 1 2 Xm B2 C k Œ@2k1f n .2k/Š 1 kD1 Z n b2 C1.x/ C m @2mC1f .x/dx 1 .2m C 1/Š A.3 The Euler-Boole Formula In the case of the Euler polynomials, the formula Z Xm y k mC1 f .0/ D y.@ f . y//Pk.0/ y. Pm. y t/@ f .t/dt/ 0 kD0 gives Z Xm 1 E 1 1 .1/mE .t/ f .0/ D .@kf .0/ C @kf .1// k m @mC1f .t/dt 2 kŠ 2 0 mŠ kD0 A.3 The Euler-Boole Formula 179 Let j be a positive integer, by replacing f by x 7! f . j C x/ in the last formula we obtain Xm 1 E f . j/ D .@kf . j/ C @kf . j C 1// k 2 kŠ kD0 Z 1 jC1 .1/mE m .t j/@mC1f .t/ dt 2 j mŠ Let’s define Œt m em.t/ D .1/ .1/ Em .t Œt/ we obtain by summation on j the Euler-Boole summation formula 1 Xm E f .1/ f .2/ C :::C .1/n1f .n/ D @kf .1/ k 2 kŠ kD0 .1/n1 Xm E C @kf .n C 1/ k 2 kŠ kD0 Z 1 nC1 1 mC1 C em .t/@ f .t/ dt 2 1 mŠ Appendix B Ramanujan’s Interpolation Formula and Carlson’s Theorem We give a proof of the following theorem. Carlson’s Theorem Let f be an analytic function in the half-plane Re.z/>d where 0<d <1. Let’s assume there exist a >0and b <such that j f .z/j Ä aebjzj for every z with Re.z/>d Then the condition f .n/ D 0 for n D 0;1;2;:::;implies f D 0: We prove this theorem by the use of an interpolation formula which is related to Ramanujan’s interpolation formula. First in Theorem 1 below we get an integral formula for the function XC1 g W x 7! f .n/.1/nxn nD0 which is Z 1 cCi1 g.x/ D f .u/xudu 2i ci1 sin.u/ Then in Theorem 2 we prove the interpolation formula Z sin.z/ C1 f .z/ D g.x/xz1dx 0 Since for the definition of the function g we only need to know the values f .n/; n D 0;1;2;::::, we see that this interpolation formula determines the function f in the half-plane Re.z/<d when we only know the values f .0/; f .1/; f .2/; : : :, thus we have a proof of Carlson’s theorem. © Springer International Publishing AG 2017 181 B. Candelpergher, Ramanujan Summation of Divergent Series, Lecture Notes in Mathematics 2185, DOI 10.1007/978-3-319-63630-6 182 B Ramanujan’s Interpolation Formula and Carlson’s Theorem Theorem 1 Let f be an analytic function in the half-plane Re.z/>dwhere 0<d <1. Let’s assume there exist a >0and b <such that j f .z/j Ä aebjzj for every z with Re.z/>d P . /. 1/n n Then the series n0 f n x is convergent in D.0; eb/ Dfx 2 C; jxj < ebg and defines an analytic function g in D.0; eb/. This function g has an analytic continuation in Sb DfjArg.z/j < bg which is defined by Z 1 cCi1 g W z 7! f .u/zudu 2i ci1 sin.u/ Proof For 0 Ä ˛<eb we have j f .n/.1/nxnj Ä aebn˛n P . /. 1/n n .0; ˛/ Thus the series Pn0 f n x is normally convergent in D and defines a C1 . /. 1/n n .0; b/ function g W z 7! nD0 f n z that is analytic in D e . For 0<x < eb and 0<c < d, the function u 7! f .u/xu is analytic in the half-plane Re.u/<d, and we consider the integral Z 1 f . u/xudu 2 . / i N sin u where N is the path iN -N-1/2 O c -iN . / u 0; 1; 2;:::; ;::: The function u 7! sin.u/ f u x has simple poles at n with Res. In/ D .1/nf .n/xn sin.u/ B Ramanujan’s Interpolation Formula and Carlson’s Theorem 183 thus we get Z 1 XN f .u/xudu D f .n/.1/nxn 2i sin.u/ N nD0 Lemma 1 When N !C1we have for 0<x < eb Z Z 1 1 cCi1 f .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us