Semigroup C*-Algebras

Semigroup C*-Algebras

Semigroup C*-algebras Xin Li Queen Mary University of London (QMUL) Reference: Survey paper \Semigroup C*-algebras" (arXiv). Plan for the talks Plan for my talks: I Constructions and examples I Nuclearity and amenability I K-theory I Classification, and some questions Plan for the talks Plan for my talks: I Constructions and examples I Nuclearity and amenability I K-theory I Classification, and some questions Reference: Survey paper \Semigroup C*-algebras" (arXiv). 2 2 For p 2 P, define Vp : ` P ! ` P; δx 7! δpx . A C*-algebra is an algebra of bounded linear operators on a Hilbert space, invariant under adjoints, closed in the norm topology. Definition ∗ ∗ 2 Cλ (P) := C (fVp: p 2 Pg) ⊆ L(` P) Semigroup C*-algebras. The construction Let P be a left cancellative semigroup. Left cancellation means that for all p; x; y 2 P, px = py implies x = y. A C*-algebra is an algebra of bounded linear operators on a Hilbert space, invariant under adjoints, closed in the norm topology. Definition ∗ ∗ 2 Cλ (P) := C (fVp: p 2 Pg) ⊆ L(` P) Semigroup C*-algebras. The construction Let P be a left cancellative semigroup. Left cancellation means that for all p; x; y 2 P, px = py implies x = y. 2 2 For p 2 P, define Vp : ` P ! ` P; δx 7! δpx . Definition ∗ ∗ 2 Cλ (P) := C (fVp: p 2 Pg) ⊆ L(` P) Semigroup C*-algebras. The construction Let P be a left cancellative semigroup. Left cancellation means that for all p; x; y 2 P, px = py implies x = y. 2 2 For p 2 P, define Vp : ` P ! ` P; δx 7! δpx . A C*-algebra is an algebra of bounded linear operators on a Hilbert space, invariant under adjoints, closed in the norm topology. Semigroup C*-algebras. The construction Let P be a left cancellative semigroup. Left cancellation means that for all p; x; y 2 P, px = py implies x = y. 2 2 For p 2 P, define Vp : ` P ! ` P; δx 7! δpx . A C*-algebra is an algebra of bounded linear operators on a Hilbert space, invariant under adjoints, closed in the norm topology. Definition ∗ ∗ 2 Cλ (P) := C (fVp: p 2 Pg) ⊆ L(` P) ∗ First example N ⊆ Z: Cλ (N) is the Toeplitz algebra [Coburn]. ∗ For G ⊆ (R; +), P = G \ [0; 1): Cλ (P) determines P [Douglas]. What about positive cones in general left-ordered groups? Semigroup C*-algebras. Examples I Positive cones: P = fx 2 G: x ≥ eg in a left-ordered group (G; ≥), where ≥ is a total order on G with y ≥ x ) gy ≥ gx for all y; x; g 2 G. ∗ For G ⊆ (R; +), P = G \ [0; 1): Cλ (P) determines P [Douglas]. What about positive cones in general left-ordered groups? Semigroup C*-algebras. Examples I Positive cones: P = fx 2 G: x ≥ eg in a left-ordered group (G; ≥), where ≥ is a total order on G with y ≥ x ) gy ≥ gx for all y; x; g 2 G. ∗ First example N ⊆ Z: Cλ (N) is the Toeplitz algebra [Coburn]. What about positive cones in general left-ordered groups? Semigroup C*-algebras. Examples I Positive cones: P = fx 2 G: x ≥ eg in a left-ordered group (G; ≥), where ≥ is a total order on G with y ≥ x ) gy ≥ gx for all y; x; g 2 G. ∗ First example N ⊆ Z: Cλ (N) is the Toeplitz algebra [Coburn]. ∗ For G ⊆ (R; +), P = G \ [0; 1): Cλ (P) determines P [Douglas]. Semigroup C*-algebras. Examples I Positive cones: P = fx 2 G: x ≥ eg in a left-ordered group (G; ≥), where ≥ is a total order on G with y ≥ x ) gy ≥ gx for all y; x; g 2 G. ∗ First example N ⊆ Z: Cλ (N) is the Toeplitz algebra [Coburn]. ∗ For G ⊆ (R; +), P = G \ [0; 1): Cλ (P) determines P [Douglas]. What about positive cones in general left-ordered groups? ∗ ∼ ∗ ∗ e.g. N × N: Cλ (N × N) = Cλ (N) ⊗ Cλ (N). ∗ ∼ e.g. N ∗ N: Cλ (N ∗ N) = T2, where T2 is the Toeplitz extension of the Cuntz algebra O2, 0 !K!T2 !O2 ! 0. What about general graph products? What about general Artin monoids? + + e.g. Braid monoids, e.g. B3 = hσ1; σ2 j σ1σ2σ1 = σ2σ1σ2i I Baumslag-Solitar monoid [Spielberg]: + + a; b j abc = bd a or a; b j a = bd abc What about general graphs of semigroups? + I Thompson monoid hx0; x1; x2;::: j xnxk = xk xn+1 for k < ni Semigroup C*-algebras. Examples I Right-angled Artin monoids [Crisp-Laca]: Let Γ = (V ; E) be a graph with E ⊆ V × V . + + AΓ := hfσv : v 2 V g j σv σw = σw σv 8 (v; w) 2 Ei . ∗ ∼ e.g. N ∗ N: Cλ (N ∗ N) = T2, where T2 is the Toeplitz extension of the Cuntz algebra O2, 0 !K!T2 !O2 ! 0. What about general graph products? What about general Artin monoids? + + e.g. Braid monoids, e.g. B3 = hσ1; σ2 j σ1σ2σ1 = σ2σ1σ2i I Baumslag-Solitar monoid [Spielberg]: + + a; b j abc = bd a or a; b j a = bd abc What about general graphs of semigroups? + I Thompson monoid hx0; x1; x2;::: j xnxk = xk xn+1 for k < ni Semigroup C*-algebras. Examples I Right-angled Artin monoids [Crisp-Laca]: Let Γ = (V ; E) be a graph with E ⊆ V × V . + + AΓ := hfσv : v 2 V g j σv σw = σw σv 8 (v; w) 2 Ei . ∗ ∼ ∗ ∗ e.g. N × N: Cλ (N × N) = Cλ (N) ⊗ Cλ (N). What about general graph products? What about general Artin monoids? + + e.g. Braid monoids, e.g. B3 = hσ1; σ2 j σ1σ2σ1 = σ2σ1σ2i I Baumslag-Solitar monoid [Spielberg]: + + a; b j abc = bd a or a; b j a = bd abc What about general graphs of semigroups? + I Thompson monoid hx0; x1; x2;::: j xnxk = xk xn+1 for k < ni Semigroup C*-algebras. Examples I Right-angled Artin monoids [Crisp-Laca]: Let Γ = (V ; E) be a graph with E ⊆ V × V . + + AΓ := hfσv : v 2 V g j σv σw = σw σv 8 (v; w) 2 Ei . ∗ ∼ ∗ ∗ e.g. N × N: Cλ (N × N) = Cλ (N) ⊗ Cλ (N). ∗ ∼ e.g. N ∗ N: Cλ (N ∗ N) = T2, where T2 is the Toeplitz extension of the Cuntz algebra O2, 0 !K!T2 !O2 ! 0. What about general Artin monoids? + + e.g. Braid monoids, e.g. B3 = hσ1; σ2 j σ1σ2σ1 = σ2σ1σ2i I Baumslag-Solitar monoid [Spielberg]: + + a; b j abc = bd a or a; b j a = bd abc What about general graphs of semigroups? + I Thompson monoid hx0; x1; x2;::: j xnxk = xk xn+1 for k < ni Semigroup C*-algebras. Examples I Right-angled Artin monoids [Crisp-Laca]: Let Γ = (V ; E) be a graph with E ⊆ V × V . + + AΓ := hfσv : v 2 V g j σv σw = σw σv 8 (v; w) 2 Ei . ∗ ∼ ∗ ∗ e.g. N × N: Cλ (N × N) = Cλ (N) ⊗ Cλ (N). ∗ ∼ e.g. N ∗ N: Cλ (N ∗ N) = T2, where T2 is the Toeplitz extension of the Cuntz algebra O2, 0 !K!T2 !O2 ! 0. What about general graph products? I Baumslag-Solitar monoid [Spielberg]: + + a; b j abc = bd a or a; b j a = bd abc What about general graphs of semigroups? + I Thompson monoid hx0; x1; x2;::: j xnxk = xk xn+1 for k < ni Semigroup C*-algebras. Examples I Right-angled Artin monoids [Crisp-Laca]: Let Γ = (V ; E) be a graph with E ⊆ V × V . + + AΓ := hfσv : v 2 V g j σv σw = σw σv 8 (v; w) 2 Ei . ∗ ∼ ∗ ∗ e.g. N × N: Cλ (N × N) = Cλ (N) ⊗ Cλ (N). ∗ ∼ e.g. N ∗ N: Cλ (N ∗ N) = T2, where T2 is the Toeplitz extension of the Cuntz algebra O2, 0 !K!T2 !O2 ! 0. What about general graph products? What about general Artin monoids? + + e.g. Braid monoids, e.g. B3 = hσ1; σ2 j σ1σ2σ1 = σ2σ1σ2i + I Thompson monoid hx0; x1; x2;::: j xnxk = xk xn+1 for k < ni Semigroup C*-algebras. Examples I Right-angled Artin monoids [Crisp-Laca]: Let Γ = (V ; E) be a graph with E ⊆ V × V . + + AΓ := hfσv : v 2 V g j σv σw = σw σv 8 (v; w) 2 Ei . ∗ ∼ ∗ ∗ e.g. N × N: Cλ (N × N) = Cλ (N) ⊗ Cλ (N). ∗ ∼ e.g. N ∗ N: Cλ (N ∗ N) = T2, where T2 is the Toeplitz extension of the Cuntz algebra O2, 0 !K!T2 !O2 ! 0. What about general graph products? What about general Artin monoids? + + e.g. Braid monoids, e.g. B3 = hσ1; σ2 j σ1σ2σ1 = σ2σ1σ2i I Baumslag-Solitar monoid [Spielberg]: + + a; b j abc = bd a or a; b j a = bd abc What about general graphs of semigroups? Semigroup C*-algebras. Examples I Right-angled Artin monoids [Crisp-Laca]: Let Γ = (V ; E) be a graph with E ⊆ V × V . + + AΓ := hfσv : v 2 V g j σv σw = σw σv 8 (v; w) 2 Ei . ∗ ∼ ∗ ∗ e.g. N × N: Cλ (N × N) = Cλ (N) ⊗ Cλ (N). ∗ ∼ e.g. N ∗ N: Cλ (N ∗ N) = T2, where T2 is the Toeplitz extension of the Cuntz algebra O2, 0 !K!T2 !O2 ! 0. What about general graph products? What about general Artin monoids? + + e.g. Braid monoids, e.g. B3 = hσ1; σ2 j σ1σ2σ1 = σ2σ1σ2i I Baumslag-Solitar monoid [Spielberg]: + + a; b j abc = bd a or a; b j a = bd abc What about general graphs of semigroups? + I Thompson monoid hx0; x1; x2;::: j xnxk = xk xn+1 for k < ni e.g. R ring of algebraic integers in number field, e.g. Z[i] or Z[ζ](ζ: root of unity) n I P ⊆ Z finitely generated.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    51 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us