
LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS Instructor: Kazumi Tolich Lecture 23 2 ¨ 29.1 Spectroscopy ¨ 29.2 Atoms ¤ The first nuclear physics experiment ¤ Using the nuclear model ¨ 29.3 Bohr’s model of atomic quantization ¨ 29.4 The Bohr hydrogen atom ¤ The stationary states of the hydrogen atom ¤ Hydrogen atom energy levels ¤ The hydrogen spectrum 29.1 Spectroscopy / demo ¨ A spectrum is recorded in a spectrometer. ¨ Self-luminous objects emit a continuous spectrum that depends on the temperature. ¨ Individual atoms produce atomic spectrum, a discrete spectrum with spectral lines. ¨ Gases also absorb discrete wavelengths. ¨ Demo: line spectra Quiz 29.1-1 Spectroscopy ¨ Balmer formula represents the wavelengths of the spectral lines of hydrogen. 91.1 nm � = 1 1 − �* �* ¤ where � = 1, 2, 3, … and � can be any integer and � > �. 29.2 Atoms - the raisin-cake model of the atom 6 ¨ J. J. Thomson, soon after discovering electrons, proposed the raisin-cake model of the atom (“plum-pudding model” actually). ¤ It was known that electrons are much smaller and less massive than atoms. ¨ The first observations that atoms have an inner structure came from beta rays and alpha rays emitted from uranium crystal. ¤ Beta rays are high-speed electrons emitted by uranium. ¤ Alpha rays (now called Alpha particles) consist of helium nuclei, with mass � = 6.64 ×106*7 kg, emitted at high speed from a sample. 29.2 The first nuclear physics experiment 7 ¨ The discovery of large-angle scattering of alpha particles led to the nuclear model of the atom in which negative electrons orbit a small, massive, positive nucleus. 29.2 Using the nuclear model 8 ¨ In the nuclear model, an atom has a nucleus with positively charged protons and neutral neutrons, and negatively charged electrons are orbiting around it. ¨ Protons and neutrons are both much more massive than electrons. ¨ Orbiting electrons are very light and can be easily knocked off, creating a positive ion. Quiz: 29.3-1 9 29.3 Bohr’s model of atomic quantization 10 ¨ Bohr model of the atom: ¤ An electron in an atom can exist only in a stationary state. ¤ Each stationary state has a discrete well- defined energy. ¤ An atom can undergo a transition by emitting or absorbing a photon with an energy equal to the difference in the energies of the states: �9:;<;= = �> − �? = ℎ�. ¤ An atom can be exited by absorbing energy in collision (collisional excitation). Quiz: 29.3-2, 29.3-3, & 29.4-1 29.4 The stationary states of the hydrogen atom 12 ¨ The allowed radii of the electron’s orbit in a hydrogen atom is * �C = � �E ¤ � = 1, 2, 3, ⋯ ¤ �E = 0.0529 nm is the Bohr radius. ¨ The possible orbits are quantized. 29.4 Hydrogen atom energy levels 13 ¨ There is an energy level in a hydrogen atom corresponding to each allowed state radius. � 13.6 eV � = − H = − C �* �* ¤ � = 1, 2, 3, ⋯ Quiz: 29.4-2 14 29.4 The hydrogen spectrum ¨ The Bohr hydrogen atom with discrete energy levels correctly predicts the discrete spectrum of the hydrogen atom..
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages15 Page
-
File Size-