Appendix a List of Axioms, Propositions and Theorems

Appendix a List of Axioms, Propositions and Theorems

Appendix A List of Axioms, Propositions and Theorems 1 Truth implies empirical adequacy. 2 Empirical adequacy does not imply truth. 3 If a discovery method 8 discovers h in [.s I n] in the limit, then there exists a limiting assessment method 0: which verifies h in [.s I n] in the limit. 4 If an assessment method 0: decides h in [.s I n] in the limit, then there exists a limiting discovery method 8 which discovers h in [.s I n] in the limit. 5 (.s,n) F KsA =* A, x E {RIT,RRT,ASA,ARA}, SE{8,0:}. 6 (.s, n) F K;(A =* C) =* (K;A =* K;C), x E {RIT,RRT,ASA,ARA}, - SE{8,0:}. 7 (.s, n) F K;A {:? K;K;A, x E {RIT,RRT,ASA,-ARA}, S E {8, o:} given consistent expectation for 8. 8 (.s, n).Ii -,K;A =* K;-,K;A, x E {RIT, RRT, ASA,ARA}, SE{8,0:}. 9 (.s,n).Ii S~A =* A, y E {V3, V3K, W, WK}, S = 8. 305 306 APPENDIX A 10 (c, n).Ii S~(A =? C) =? (S~A =? S~C), y E {V:3, V:3K} , ~ ~ 3=8. 11 (c, n) .Ii S~A =? -,S;-,A, y E {V:3, V:3K} , ~ 3=8. 12 (c, n) p S~(A =? C) =? (S~A =? S~C), y E {W,WK}, ~ ~ 13 (c, n) p S~A =? -,S;-,A, y E {W,WK}, ~ 3 = 8. 14 (c, n) p DA =? DA. 15 (c, n) p DA =? BA. 16 (c, n) p BA =? DA. 17 (c, n) p DA =? G A. 18 (c,n) p DA =? FA. 19 (c, n) p BA =? GA. 20 (c, n) p BA =? FA. 21 (c, n) p DA =? GA. 22 (c,n) p DA =? FA. 23 (c, n) pHD A =? A. 24 (c, n) p P D A =? A. 25 Empirical adequacy and tense: (a) (c, n).Ii A =? GA. (b) (c,n).Ii A =? FA. (c) (c, n).Ii a =? Ga. (d) (c, n).Ii a =? Fa. (e) (c, n) .Ii A =? H A. APPENDIX A 307 (f) (c,n) ~ A =} PA. (g) (c,n) Fa=} Ha. (h) (10, n) Fa=} Pa. 26 Truth and tense: (a) (c,n) ~ A =} GA. (b) (c,n) ~ A =} FA. (c) (c,n) Fa=} Ga. (d) (c,n) Fa=} Ga. (e) (c,n)~A=}HA. (f) (10, n) ~ A =} PA. (g) (c,n) Fa=}Ha. (h) (10, n) Fa=} Pa. 27 (c,n) F KtA =} FKtA (AFK) x E {RIT, RRT}. SE{8,a}. 28 (c,n) F KtA =} GKtA (AFK) x E {RIT,RRT}. SE{8,a}. 29 (c,n) ~ KsA =} FKsA, x E {ASA, ARA}, SE{8,a}. 30 (c:, n) ~ KsA =} GKsA, x E {ASA,ARA}, SE{8,a}. 31 Methodological recommendations: + Permissive, - Restrictive, * Insufficient: 308 APPENDIX A (D) (T) (K) (4) (5) -Consistency (+) + (+) * / -Perfect memory (+) + (+) / - Consistent expectation (+) + (+) + / - Infallibility (+) + (+) * / - Epistemic soundness II (+) (+) + + / 32 (MMS+1) (c,n) F KfIT A=} KfRT A. 33 (MMS+2) (c,n) F KfIT A=} KtSAA. 34 (MMS+3) (c,n) F KPT A=} KtRAA. 35 (MMS+4) (c,n) F KfRT A=} KfIT A. 36 (MMS+5) (c,n) F KfRT A=} KtSAA. 37 (MMS+6) (c,n) F KfRT A=} KtRAA. 38 (MMS+7) (c,n) F KtSAA =} KtRAA. 39 (MMS+8) (c,n) F KtRAA =} KtSAA. 40 (MMS-9 ) (c,n) ~ KtSAA =} KfIT A. 41 (MMS- lO ) (c,n) ~ KtSAA =} KfRT A. 42 (MMS-ll ) (c,n) ~ KtRAA =} KfIT A. 43 (MMS- 12 ) (c,n) ~ KtRAA =} KfRT A. 44 (c, n) F K~KBA =} KeA , 8,3 E {a,,B,1',8}, x, y, Z E {RIT, RRT, ASA, ARA}. In particular (a) Theorem 15.4: Uniform Knowledge Transmissibility: APPENDIX A 309 - Methods fixed K~K3A KeA - Correctness fixed II 1. x,y = RIT z=RIT KfITA 2. x,y = ASA z=ASA KtSAA 3. x,y = RRT z=RRT K;:RT A 4. x,y= ARA z=ARA K~RAA (b) Theorem 15.5: Semi-Uniform Knowledge Transmissibility 1. - Methods fixed I K~K3A KeA - Correctness mixed III 1. x = RIT,y = ASA z=ASA KtSAA 2. x = RIT,y = ASA z=RIT 3. x = ASA,y = RIT z=ASA KtSAA 4. x = ASA,y = RIT z=RIT KfITA 5. x = RRT,y = ARA z=ARA KtRAA 6. x = RRT,y = ARA z=RRT 7. x = ARA,y = RRT z=ARA KtRAA 8. x = ARA,y = RRT z=RRT KfRTA (c) Theorem 15.6: Semi- Uniform Knowledge Transmissibility 2. - Methods fixed I K~K3A KeA - Correctness mixed III 1. x = RIT,y = ASA z=ASA KtSAA 2. x = RIT,y = ASA z=RIT 3. x = ASA,y = RIT z=ASA KtSAA 4. x = ASA,y = RIT z=RIT KfITA 5. x = RRT,y = ARA z=ARA KtRAA 6. x = RRT,y = ARA z=RRT 7. x = ARA,y = RRT z=ARA KtRAA 8. x = ARA,y = RRT z=RRT KfRTA (d) Theorem 15.7: Non-Uniform Knowledge Transmissibility. 310 APPENDIX A - Methods mixed K~K3A KeA - Correctness mixed II l. x = RIT,y = ARA z=ARA KfRAA 2. x = RIT, y = ARA z= RIT 3. x = ARA,y = RIT z=RIT Kf-1TA 4. x = ARA,y = RIT z=ARA KfRAA 5. x = RRT,y = ASA z=RRT 6. x = RRT,y = ASA z=ASA KfsAA 7. x = ASA,y = RRT z=RRT Kf-RTA 8. x = ASA,y = RRT z=ASA KfsAA 45 Theorem 15.8: Transmissibility of Realistic and Anti-realistic Knowl­ edge: (a) A realist's knowledge is non-transmissible to an anti-realist. (b) An anti-realist's knowledge is transmissible to a realist. Appendix B Additional Proofs Proof of Proposition 11.1 PROPOSITION B.1 For every T : ET is a (J -algebra. It has to be shown that ET indeed is a (J -algebra. The following two lemmata will simply the final proof. LEMMA B. 2 The following properties hold: 1 hA n hB = hAnB. 2 hA U hB = hAUB. 3 hA n hB = hA\B· 4 n h n Ai\ n Bi = h n (Ai\Bi)· n<w i<n i<n n<w 5 0 E [T· 6 WE [T. Proof. 1 Prove that hA n hB = hAnB. Now (JL, l) E hA n hB {:} (JL, l) E hA /\ (JL, l) E hB {:} [JL E A /\ l 2: k(JL)]/\ [JL E B /\ l 2: k(JL)] {:} JL E AnB /\l2: k(JL) {:} (JL, l) E hAnB. 2 Prove that hA U hB = hAUB. By similar construction (JL, l) E hA U hB {:} (JL, l) E hA V (JL, l) E hB {:} [JL E A /\ l 2: k(JL)] V [JL E B /\ l 2: k(JL)] {:} [JL E A V JL E B]/\ l 2: k(JL) {:} 311 312 APPENDIX B [p E A U B]/\ l 2 k(p) ~ (p, l) E hAUB. 3 Prove that hA n hB = hA\B. Again (p, l) E hA n hB ~ (p, l) E hA /\ (p, l) tt hB ~ [p E A /\ l 2 k(p)]/\ [(p tt B)V (p E B /\ l < k(p)] ~ [(p E A /\ (l 2 k(p)) /\ P tt B)]V [(p E A /\ l 2 k(p)) /\ (p E B /\ l < k(p))] ~ pEA /\ (p tt B /\ l 2 k(p)) ~ P E A\B /\ l 2 k(p) ~ (p, l) E hA\B. By definition hA U hB is closed under fT = {hA U hB I A,B ~ T}. 4 Prove next that n h n Ai\ n Bi = h n (Ai\Bi)· Now assume that n<w i<n i<n n<w (T,l) E n h n Ai\ n Bi {::} n<w i<n i<n Vn E w : (T, l) E h n Ai\ n Bi ~ i<n i<n VnEw: [TE.n Ai\.n Bi/\l2k(T)] ~ z<n z<n Vn Ew : [T E.n Ai\ .n Bi] /\ Vn Ew : [l 2 k(T)] ~ z<n z<n VnEw: [TE.n Ai\.n Bi] /\l2k(T)~ z<n z<n TEn [.n Ai\.n Bi]/\l2k(T)~ nEw z<n z<n (T,l) E h n (n Ai\ n Bi)· n<w i<n i<n 5 0 E fr =? 0 = hA n hB E fr· 6 W E fr =? W = hA U hB E fr· APPENDIX B 313 • LEMMA B.3 All hypotheses in £T are absolute time invariant. Proof. 1 Show that if A ~ T, then hA is absolute time invariant with respect to (c:, n). Hence, if (f-L, m) E [c: I n] n hA, then :JT E (c: I n)Vl E W : (T, k + l) E hA where k == max{n,m}. Now (f-L,m) E [c: I n] n hA ~ (f-L I n = c: I n)!\ (:JT E A: (f-L,m) E hT ) ~ (f-L I n = c: I n) !\ (f-L = T !\ m 2:: k(T)). This implies Vl 2:: k,max{n,m} 2:: k(T) : (f-L,l) E hA· 2 Show that if A ~ T, then hA is absolute time invariant with respect to (c:, n). Hence, if (f-L, m) E [c: I n] n hA, then :JT E (c: I n)Vl Ew: (T,k+l) E hA where k = max{n,m}. Now (f-L,m) E [c: I n] n hA ~ (f-L I n = c: I n) !\ [f-L \f A V (f-L E A!\ m < k(T))]. There are hence two possibilities (a) f-L \f A=> Vl E w: (f-L,l) E hA- (b) f-L E A!\ m < k(T).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    58 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us