Electromagnetic Metamaterials: Past, Present, and Future Sergei A

Electromagnetic Metamaterials: Past, Present, and Future Sergei A

Electromagnetic metamaterials: Past, present, and future Sergei A. Tretyakov Department of Radio Science and Engineering School of Electrical Engineering Aalto University (Finland) September 7, 2015 1 Metamaterial concept Metamaterial is “an arrangement of artificial structural elements, designed to achieve advantageous and unusual electromagnetic properties” Building Block (unit cell) Constituent element Picture by M. Lapine, modified by M. Albooyeh meta.aalto.fi 2 1 Outline Metamaterial as “an arrangement of artificial structural elements, designed to achieve advantageous and unusual electromagnetic properties” Unit cells are electrically small: Effectively homogeneous media, characterized by permittivity, permeability,. I Past: How old we are? I 15 years of metamaterials I 150 years of Maxwell’s equations I Present: What do we know today? I Future: What next? meta.aalto.fi 3 1 Artificial chiral materials: Imitating nature Bose (India) Lindman (Finland) J.C. Bose, Proc. Royal Soc., vol. 63, pp. 146-152, 1898; K.F. Lindman, Ofversigt¨ af Finska Vetenskaps-Societetens Forhandlingar,¨ LVII, A, no. 3, 1914 (Annalen der Physik, 63, no. 4, 621-644, 1920). meta.aalto.fi 4 1 Probably the first metasurface: 1898 H. Lamb, On the reflection and transmission of electric waves by a metallic grating, Proc. London Math. Soc., vol. 29, ser. 1, 523-544, 1898. meta.aalto.fi 5 1 Engineering properties of a metasurface: 1898 meta.aalto.fi 6 1 Artificial dielectrics W.E. Kock, Metallic delay lenses, Bell Syst. Tech. J., vol. 27, 58-82, 1948; J. Brown, The design of metallic delay dielectrics, Proc. IRE (London), vol. 97, part III, 45-48, 1950. meta.aalto.fi 7 1 Artificial magnetics: Split rings z y x a a 2 l l l 2 r o S.A. Schelkunoff and H.T. Friis, Antennas: Theory and Practice, New York: Wiley, 1952; D. Jaggard, N. Engheta, and many other authors, 1980–2000, S.A. Tretyakov, F. Mariotte, C.R. Simovski, T.G. Kharina, J.-P. Heliot, Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data, IEEE Trans. Antennas Propag., vol. 44, no. 7, 1006-1014, 1996. meta.aalto.fi 8 1 Exciting possibilities in absorber applications V.K. Varadan, V.V. Varadan, and A. Lakhtakia, On the possibility of designing anti-reflection coating using chiral composites, J. Wave-Mater. Interact., vol. 2, 71-81, 1987; D. Jaggard and N. Engheta, Chirosorb as an invisible medium, Electronics Lett., vol. 25, no. 3, 173-174, 1989. Comment by J.C. Monzon, vol. 25, no. 16, p. 1060. r 1 µP D E j B H B j E = P ξc ; = ξc η = 2 − µP − ) P + µPξc r µ D = E jκH; B = µH + jκE η = − ) meta.aalto.fi 9 1 Research in chiral and bianisotropic media: Complex media electromagnetics Bianisotropics 2000, 8th International Conference on Electromagnetics of Complex Media, 27- 29 September 2000, Technical University of Lisbon, Portugal Bianisotropics'98, 7th International Conference on Complex Media, 3-6 June 1998, Technical University of Braunschweig, Germany Bianisotropics'97 - International Conference and Workshop on Electromagnetics of Complex Media, 5-7 June 1997, The University of Glasgow, Great Britain Chiral'96 - NATO Advanced Research Workshop, July 1996, St. Petersburg - Moscow, Russia. Chiral'95 - International Conference on the Electromagnetic Effects of Chirality and its Applications, October 1995, The Pennsylvania State University, USA. Chiral'94 - 3rd International Workshop on Chiral, Bi-isotropic and Bi-anisotropic Media, May 1994, Perigueux, France Bianisotropics'93 - Seminar on Electrodynamics of Chiral and Bianisotropic Media, October 1993, Gomel, Belarus. Bi-isotropics'93 - Workshop on Novel Microwave Materials, February 1993, Helsinki University of Technology, Finland. meta.aalto.fi 10 1 The role of chirality in absorbers Microscopic view p = αeeE + αemH; m = αmmH + αmeE ! ! 1 2 ∆ 1 2 ∆ = host+ Nαee N ; µ = µhost+ Nαmm N D − 3µhost D − 3host α α ∆ D = 1 N ee N mm + N2 − 3host − 3µhost 9hostµhost ∆= αeeαmm αemαme − But, most commonly αeeαmm = αemαme; ∆= 0! ) S.A. Tretyakov, A.A. Sochava, C.R. Simovski, Influence of chiral shapes of individual inclusions on the absorption in chiral composite coatings, Electromagnetics, vol. 16, no. 2, pp. 113-127, 1996. meta.aalto.fi 11 1 Chiral shapes ∆= αeeαmm αemαme = 0 ∆= αeeαmm αemαme , 0 − − S.A. Tretyakov, A.A. Sochava, C.R. Simovski, Influence of chiral shapes of individual inclusions on the absorption in chiral composite coatings, Electromagnetics, vol. 16, no. 2, pp. 113-127, 1996. meta.aalto.fi 12 1 Metasurface absorbers Engineered electric and magnetic current sheets Y Z X Je , Jm d<<λ I I T T R R z 0 j!p j!m J = ; J = e S m S Here S is the unit-cell area. meta.aalto.fi 13 1 Absorbers: Zero reflected and transmitted fields T. Niemi, A. Karilainen, and S. Tretyakov, Synthesis of polarization transformers, IEEE Trans. Antennas Propagation, vol. 61, no. 6, pp. 3102-3111, 2013. ! j! 1 Eref = η0bαee 2jΩb bαmm Einc −2S ± − η0 " !# j! 1 ! Etr = 1 η0bαee + bαmm Einc bκ z0 Einc − 2S η0 ∓ S × Magnetic response (αmm) controls matching; omega coupling (Ω) controls asymmetry in reflections from two sides; chirality (κ) controls polarization transformation in transmission. For full absorption the chirality parameter bκ must be zero! meta.aalto.fi 14 1 Chirality in modern absorbers R 1 R h 2 1 h 2 r r 2 2 2 1 D D 1 2 d d 1 2 V.S. Asadchy, I.A. Faniayeu, Y. Radi, S.A. Khakhomov, I.V. Semchenko, and S.A. Tretyakov, Broadband reflectionless metasheets: Frequency-selective transmission and perfect absorption, Phys. Rev. X, vol. 5, p. 031005, 2015. meta.aalto.fi 15 1 Polarizabilities of spirals can be balanced 6 s] 6 s] 2 α 2 m Re( ) α m Re( ) 4 ee ee −14 Im(α ) −14 Im(α ) ee 3 ee α Re( ) Re(α ) 2 em em α Im( ) Im(α ) em em α 0 Re( ) Re(α ) mm 0 mm α Im( ) Im(α ) −2 mm mm Polarizabilities [10 Polarizabilities [10 −4 −3 2.7 3 3.3 3.6 3 3.1 3.2 3.25 Frequency (GHz) Frequency (GHz) meta.aalto.fi 16 1 Frequency response 1 0.75 R 0.5 T A 0.25 0 2.9 3 3.1 3.2 Frequency (GHz) 1 0.8 0.6 R T A 0.4 0.2 0 0 2 4 6 8 10 Frequency (GHz) meta.aalto.fi 17 1 Papers on “chirality” AND “electromagnetic” Sharp raise around 1990 (“invisible material”) Somewhat down around 2000 (chirality and bianisotropy is well understood) Up again? 2013-14 meta.aalto.fi 18 1 Modular approach in electronics and metatronics Pictures by N. Engheta. N. Engheta, Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials, Science, vol. 317, p. 1698, 2007. meta.aalto.fi 19 1 Modular approach in metamaterials: Materiatronics General (linear) electromagnetic material: D = E + a H · · B = µ H + b E · · General (linear) meta-atom: p = αee E + αem H · · m = αmm H + αme E · · What are the basic modules from which any meta-atom and any medium can be built? A.A. Sochava, C.R. Simovski, S.A. Tretyakov, Chiral effects and eigenwaves in bi-anisotropic omega structures, Advances in Complex Electromagnetic Materials, NATO ASI Series High Technology, vol. 28, Kluwer Academic Publishers, pp. 85-102, 1997. meta.aalto.fi 20 1 Basic building blocks: fundamental meta-atoms? Let us consider some arbitrary reciprocal particle: y y0 z x0 x xx yy xz yz p = αee E+αem H = α x0x0 + α y0y0 E+ α x0 + α y0 z0 H · · ee ee · em em · zz zx zy m = αmm H + αme E = α z0z0 H + z0 α x0 + α y0 E · · mm · me me · T Reciprocity: αme = α − em meta.aalto.fi 21 1 Electric and magnetic meta-atoms 1. Electric dipole (e.g., a small resonant antenna) 2. Magnetic dipole (e.g., a split ring) meta.aalto.fi 22 1 Fundamental magnetoelectric meta-atoms? y xz yz αem = αemx0 + αemy0 z0 = Kr0z0 q r xz 2 yz 2 1 xz yz 0 K = (αem) + (αem) ; r0 = K αemx0 + αemy0 y0 tr αem = 0; because r0 z0 = 0 · z x0 x Splitting into symmetric and anti-symmetric parts, we have S A αem = αem + αem where S K A K α = (r0z0 + z0r0) ; α = (r0z0 z0r0) em 2 em 2 − meta.aalto.fi 23 1 We need spirals We can write the symmetric part of αem in the diagonal form: S K pK pK α = (v0v0 w0w0) where v0 = (r0+z0); w0 = (z0 r0) em 2 − 2 2 − Small spirals (right- and left-handed) z r z 0 0 0 r 0 meta.aalto.fi 24 1 And the last element is. A K What particle topology corresponds to α = (r0z0 z0r0)? em 2 − r0z0 z0r0 = u0 (r0r0 + z0z0) = u0 I − − × − × operator of 90 rotation around u0. ◦ − Uniaxial omega particle: a “hat” u0 meta.aalto.fi 25 1 Our example Γ-particle decomposed into fundamental building blocks z0 z z 0 r0 y r0 u0 u0 x meta.aalto.fi 26 1 Our Γ-particle is a pseudochiral omega particle κ = tr αem : chirality parameter S N = αem (trace-free): pseudochirality parameter A J = αem: omega parameter Coupling parameters Class κ , 0; N = 0; J = 0 Isotropic chiral medium κ , 0; N , 0; J = 0 Anisotropic chiral medium κ = 0; N , 0; J = 0 Pseudochiral medium κ = 0; N = 0; J , 0 Omega medium κ , 0; N = 0; J , 0 Chiral omega medium κ = 0; N , 0; J , 0 Pseudochiral omega medium κ , 0; N , 0; J , 0 General reciprocal bi-anisotropic medium S.A. Tretyakov, A.H. Sihvola, A.A. Sochava, C.R.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    52 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us