Mass/Orbit Modeling of Spherical Systems: from Galaxy Clusters to Dwarf Spheroidals

Mass/Orbit Modeling of Spherical Systems: from Galaxy Clusters to Dwarf Spheroidals

Mass/orbit modeling of spherical systems: from galaxy clusters to dwarf spheroidals Andrea BIVIANO Antonio CAVA OATS, Trieste Univ. de Genève Gwenaël BOUÉ Richard TRILLING IMCCE, Paris retiree + Chris GORDON (Christchurch, NZ), Radek WOJTAK (KIPAC, Stanford), Joe SILK (IAP…), Laura WATKINS (STScI), Matt WALKER (Pittsburgh), Justin READ (Sussex) ... Gary Mamon (IAP), 29 August 2016, Amsterdam-Paris-Stockholm mtg, Gouvieux, Mass/orbit modeling of spherical systems: from galaxy clusters to dwarfs 1 Basic Motivations Nature of Dark Matter self-interacting? warm? need for modified gravity? annihilation cross-section Dark Matter as a reference normalization, concentration, inner & outer slopes = f(halo mass) Dark Matter as a constraint on galaxy formation same compared to simulations Morphological evolution of galaxies in clusters log M/M⊙ = 15 orbital shapes of different galaxy types in clusters Formation & evolution of dwarf spheroidal galaxies log M/M⊙ = 8.5 orbital shapes of different stellar types in dwarfs spheroidals Gary Mamon (IAP), 29 August 2016, Amsterdam-Paris-Stockholm mtg, Gouvieux, Mass/orbit modeling of spherical systems: from galaxy clusters to dwarfs 2 Dark Matter Standard Model DM is collisionless Aquarius DM Simulation Springel+08 Millennium DM Simulation Springel+05 300 kpc 300 Mpc Milky Way size r −3 Navarro, Frenk & White 96 « NFW » Navarro, Frenk & White 96 « NFW » −1 r x50 numerous subhalos 8-9 • low mass (10 M⦿) galaxies (dSph) dominated by Dark Matter • lower mass structures = dark! density r −3 Cores if self-interacting DM cuspy dark matter halos (or baryonic feedback) Subhalos rare if warm DM particle Gary Mamon (IAP), 29 August 2016,log Amsterdam-Paris-Stockholmradius (kpc) mtg, Gouvieux, Mass/orbit modeling of spherical systems: from galaxy clusters to dwarfs 3 Cosmological N-body simulations with gas Gnedin et al. 04 Pontzen & Governato 12 −2 ρDM ∝ r 2 ρDM ∝ 1/r intermittent SN feedback no feedback dominant baryons → even cuspier dark matter halos intermittent SN feedback → cored dark matter halos Gary Mamon (IAP), 29 August 2016, Amsterdam-Paris-Stockholm mtg, Gouvieux, Mass/orbit modeling of spherical systems: from galaxy clusters to dwarfs 4 Motivations 2 If DM has • fairly large annihilation x-section • cuspy profiles (as in DM-only cosmo-sims) → ~ observable in γ-rays d2Φ ⌃(v) v dN flux density = J (✓) h i b dE d⌦ los m2 i dE DM i i X ✓ ◆ Astrophysics Particle Particle Physics Chemistry 1 2 1 1 2 r dr Jlos(✓)= ⇢ (r)ds = ⇢ (r) 2 2 2 2 2 4⇡D 2⇡D ✓ D pr ✓ D Z Z − Mass/Orbit modeling → J → calibration of Particle Physics term Gary Mamon (IAP), 29 August 2016, Amsterdam-Paris-Stockholm mtg, Gouvieux, Mass/orbit modeling of spherical systems: from galaxy clusters to dwarfs 5 γ-ray telescopes H.E.S.S. (Namibia) Resolution 10’ VERITAS (Arizona) Resolution 6’-10’ MAGIC (Canary Islands) Cherenkov Telescope Array (CTA): 10x more sensitive, wider energy-range 3x better angular resolution Which targets for CTA? Lefranc, GM & Panci 16, JCAP, submitted Gary Mamon (IAP), 29 August 2016, Amsterdam-Paris-Stockholm mtg, Gouvieux, Mass/orbit modeling of spherical systems: from galaxy clusters to dwarfs 6 Dependence of line-of-sight γ-ray flux on DM slope & concentration at fixed DM virial mass ��� concentration�=������� ��� c=5 c=20 c=10 ��� ��� inner slope ��� γ=-1 ���� γ=-0.7 γ=-0.4 �� γ=-0.1 ����� ����� ����� ����� ����� ����� � �/���� inner DM slope vs DM concentration degeneracy may be lifted Gary Mamon (IAP), 29 August 2016, Amsterdam-Paris-Stockholm mtg, Gouvieux, Mass/orbit modeling of spherical systems: from galaxy clusters to dwarfs 7 Basic methods to measure mass profiles • Dynamics tracer line-of-sight velocities Only dynamics is applicable to dwarf spheroidal galaxies • Hydrodynamics Dynamics also provides X-rays w/o or w SZ orbital shapes • General relativity strong or weak gravitational lensing Gary Mamon (IAP), 29 August 2016, Amsterdam-Paris-Stockholm mtg, Gouvieux, Mass/orbit modeling of spherical systems: from galaxy clusters to dwarfs 8 Dark Matter = Total Matter – Visible Matter DM Gary Mamon (IAP), 29 August 2016, Amsterdam-Paris-Stockholm mtg, Gouvieux, Mass/orbit modeling of spherical systems: from galaxy clusters to dwarfs 9 Internal kinematics: from phase space to local space see also Hamish Silverwood’s talk f = f r,v ≡ distribution function = 6D phase space density ( ) Collisionless Boltzmann Equation ∂f ∂f + v⋅ ∇f − ∇Φ⋅ = 0 incompressible 6D fluid ∂t ∂v € v CBE d 3v Boltzmann ∫ j € P = ⌫ Φ Jeans Equation r · − r tracer density € 2 P = ⌫ σv Maxwell Jeans Gary Mamon (IAP), 29 August 2016, Amsterdam-Paris-Stockholm mtg, Gouvieux, Mass/orbit modeling of spherical systems: from galaxy clusters to dwarfs 10 Spherical stationary Jeans equation tracer density anisotropic dynamical pressure 2 d ⇥⇤r β(r) 2 GM(r) +2 ⇥⇤r = ⇥ 2 dr ⇥ r − r ⇥2(r) θ = velocity anisotropy β(r)=1 2 − ⇥r (r) isotropic orbits: β = 0 radial orbits: β = 1 circular orbits: β → −∞ mass / anisotropy degeneracy MAD Gary Mamon (IAP), 29 August 2016, Amsterdam-Paris-Stockholm mtg, Gouvieux, Mass/orbit modeling of spherical systems: from galaxy clusters to dwarfs 11 2 classes of kinematical modeling e.g. chap. 5 of Courteau et al. RevModPhys 2014 • Jeans equations on moments of the observed LOS velocities in bins of projected radii • Distribution functions on distribution of tracers in projected phase space Gary Mamon (IAP), 29 August 2016, Amsterdam-Paris-Stockholm mtg, Gouvieux, Mass/orbit modeling of spherical systems: from galaxy clusters to dwarfs 12 2 classes of kinematic modelling 1. Jeans analysis R r Data: surface density Σ, los velocity dispersion σlos (& kurtosis κlos) in bins of projected radius R 2 – model fit of los velocity dispersion M & β → Σ σlos Tremaine+94; Mamon & Łokas 05b 2 – model fit of los velocity dispersion & kurtosis M & β → Σ σlos & κlos Łokas 02; Richardson & Fairbairn 13 2 – Anisotropy inversion Σ σlos & M → β Binney & Mamon 82; Solanes & Salvador-Solé 90; Dejonghe & Merritt 92; ... 2 – Mass inversion Σ σlos & β → M Mamon & Boué 10; Wolf+10 2. Distribution function modeling Data: distribution of tracers in projected phase space g(R,vlos) – standard M & β & f(E,J) → g(R,vlos) Wojtak+09 – orbit modeling M & orbits → g(R,vlos) Schwarzschild 79; Syer & Tremaine 94; de Lorenzi+09 – elementary distribution funcs M & fi(E,J) → g(R,vlos) Merritt & Saha 93; Gerhard+98; – MAMPOSSt M & β & f(v3D) → g(R,vlos) Mamon, Biviano & Boué 13 – caustics g(R,vlos) & β → M Diaferio & Geller 97 Gary Mamon (IAP), 29 August 2016, Amsterdam-Paris-Stockholm mtg, Gouvieux, Mass/orbit modeling of spherical systems: from galaxy clusters to dwarfs 13 R r Mass inversion Kinematic deprojection & mass inversion of spherical systems with known anisotropy Mamon & Boué 10; Wolf et al. 10 ∞ $ R2 ' r dr anisotropic kinematic projection P(R) = 2 1− β p ∫ & 2 ) 2 2 R % r ( r − R 2 p = ν σr = dynamical pressure Binney & Mamon 82 2 P = Σ σlos = observed “projected pressure” € deprojection GM & Boué 10: → simple β(r) ↓ insert dynamical pressure into Jeans equation → mass profile simple β(r): single integral! Gary Mamon (IAP), 29 August 2016, Amsterdam-Paris-Stockholm mtg, Gouvieux, Mass/orbit modeling of spherical systems: from galaxy clusters to dwarfs 14 Jeans analysis involves binning! Richardson & Fairbairn 14 Sculptor Gary Mamon (IAP), 29 August 2016, Amsterdam-Paris-Stockholm mtg, Gouvieux, Mass/orbit modeling of spherical systems: from galaxy clusters to dwarfs 15 z Distribution function modeling R r Density in projected phase space Dejonghe & Merritt 92 ∞ r dr +∞ +∞ & 1 ) g(R,v ) = 2 dv f v2 + Φ(r),J dv z ∫ 2 2 ∫ R ∫ '( 2 *+ θ R r − R −∞ −∞ what choice for f(E,J)? € ΛCDM halos: β 2 − 0 2(β β0) J f = f(E,J)=f (E) J ∞− 1+ E r2v2 a a ⇥ Wojtak, Łokas, GM, et al. 08 analysis in projection Wojtak, Łokas, GM, et al. 09 slow (triple integral) Gary Mamon (IAP), 29 August 2016, Amsterdam-Paris-Stockholm mtg, Gouvieux, Mass/orbit modeling of spherical systems: from galaxy clusters to dwarfs 16 MAMPOSSt: Modeling Anisotropy & Mass Profiles of Observed Spherical Systems Mamon, Biviano & Boué 13 PDF of distribution in projected phase space 4000 4⇡R 1 r⌫(r) Projected phase space Ê p(R, v )= h(v R, r)dr Ê z z Ê Ê 2000 Ê 2 2 Ê Ê ∆N p | ÊÊ Ê Ê Ê p R r R ÊÊÊ Ê Ê Ê Ê ÊÊÊ Ê ÊÊ Ê Ê Ê ÊÊÊÊ Ê Ê Ê ÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Z L Ê Ê ÊÊÊ Ê Ê Ê Ê Ê ÊÊ ÊÊ ÊÊÊÊ Ê Ê Ê Ê Ê Ê Ê Ê Ê − 1 Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê ÊÊÊ Ê Ê Ê Ê ÊÊÊÊÊÊ Ê ÊÊÊ Ê Ê Ê Ê Ê Ê Ê ÊÊ Ê Ê Ê Ê Ê Ê - Ê Ê Ê Ê ÊÊ Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ Ê ÊÊÊ ÊÊ ÊÊÊ Ê Ê ÊÊ Ê Ê Ê Ê Ê s ÊÊÊÊ Ê Ê Ê Ê Ê Ê ÊÊ Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ Ê ÊÊ Ê Ê Ê Ê ÊÊ Ê ÊÊ ÊÊÊÊ Ê ÊÊÊ Ê ÊÊ ÊÊ Ê Ê Ê ÊÊ ÊÊ ÊÊÊ Ê Ê Ê ÊÊ Ê ÊÊ ÊÊÊ Ê Ê ÊÊ ÊÊ Ê 0 Ê ÊÊÊÊÊÊÊ ÊÊÊÊ Ê ÊÊ Ê Ê ÊÊÊÊ Ê Ê ÊÊÊ ÊÊ ÊÊ ÊÊ ÊÊÊ ÊÊ Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊ ÊÊ Ê ÊÊ Ê ÊÊÊÊ ÊÊ ÊÊ ÊÊ Ê ÊÊ ÊÊÊ Ê Ê Ê ÊÊ Ê Ê ÊÊ km Ê Ê Ê Ê Ê ÊÊ ÊÊÊ ÊÊ Ê Ê Ê Ê Ê Ê Ê ÊÊÊ Ê ÊÊ Ê ÊÊ ÊÊ Ê Ê Gaussian 3D velocities: H ÊÊ Ê ÊÊÊÊ Ê Ê Ê ÊÊ Ê Ê ÊÊ ÊÊ Ê Ê Ê Ê Ê Ê Ê ÊÊÊ ÊÊ Ê ÊÊ Ê ÊÊ ÊÊÊÊ ÊÊ Ê ÊÊ Ê Ê ÊÊÊÊÊ Ê Ê Ê Ê Ê Ê Ê v Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ Ê Ê Ê Ê Ê ÊÊÊ ÊÊ ÊÊ Ê Ê Ê Ê ÊÊ Ê ÊÊÊ ÊÊ Ê Ê ÊÊ Ê ÊÊ Ê ÊÊ Ê ÊÊ Ê Ê Ê ÊÊ Ê ÊÊ ÊÊÊ Ê Ê Ê ÊÊ ÊÊ Ê Ê Ê Ê Ê Ê Ê ÊÊÊÊÊ Ê Ê Ê ÊÊÊÊ Ê Ê Ê Ê ÊÊÊ Ê ÊÊ Ê Ê Ê ÊÊ Ê Ê Ê 2 Ê Ê Ê Ê ÊÊ Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê 1 v Ê Ê Ê Ê Ê Ê -2000 Ê Ê Ê z Ê Ê Ê ÊÊ h(v R, r)= exp ÊÊ Ê z 2 2 Ê | 2⇡z (R, r) −2 σz (R, r) ÊÊ -4000 0 500 1000 1500 2000 2500 line-of-sight velocity R 2 R kpc σz(R, r)= 1 β(r) σr(r) projected radius − r H L s ✓ ◆ Solution to Jeans equation of local dynamical equilibrium 2 z 1 1 dt GM(s) σ2(r)= exp 2 β(t) ⌫(s) ds R r r ⌫(r) t s2 Zr Zr very fast! Gary Mamon (IAP), 29 August 2016, Amsterdam-Paris-Stockholm

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    43 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us