Fixed Path Pull-In/Pushback Trajectories

Fixed Path Pull-In/Pushback Trajectories

FIXED PATH PULL-IN/PUSHBACK TRAJECTORIES FOR AIRLINER GROUND TRANSPORT By KARTHIK KUMAR RAJENDRAN Bachelor of Engineering in Mechanical Engineering Anna University Chennai, India 2010 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 2019 FIXED PATH PULL-IN/PUSHBACK TRAJECTORIES FOR AIRLINER GROUND TRANSPORT Thesis Approved: Dr. James Allan Kidd Thesis Adviser Dr. Jerome Hausselle Dr. Shuodao Wang ii ACKNOWLEDGEMENTS I sincerely thank to my adviser Dr. James Allan Kidd for giving me the opportunity to pursue my graduate studies under him. His extensive support and guidance steer me in the right path during the thesis. I am very much indebted for his presence and without his unbounded knowledge, constant support and patience this thesis would not have been possible. I would like to express my gratitude to my committee members Dr. Jerome Hausselle and Dr. Shuodao Wang for their support and advise. iii Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University. Name: KARTHIK KUMAR RAJENDRAN Date of Degree: MAY, 2019 Title of Study: FIXED PATH PILL-IN/PUSHBACK TRAJECTORIES FOR AIRLINER GROUND TRANSPORT Major Field: MECHANICAL AND AEROSPACE ENGINEERING Abstract: The process of ground movement of airplanes about an airport is currently accomplished with a combination of engine thrust and ground vehicles. Minimization of on-ground fuel usage of airlines and reduction of ground support equipment hazards are desirable goals for airlines and airports. Fuel economy, pollution and noise as well as safety improvements are sought by a variety of technologies and operational approaches. In this research, an investigation is conducted into the range of potential paths for pulling airliners into their destination gates and pushing them back for engine start on departure through fixed path nose gear tracks. The feasibility of fixed paths is analyzed for this application and improved trajectories are identified. A kinematic model is developed to generate the trajectory of Main Landing Gear, wing and tail tips of an aircraft. Benefits and risks of system integration also discussed. iv TABLE OF CONTENTS Chapter Page I. INTRODUCTION ......................................................................................................1 1.1 Research Objectives ...........................................................................................3 1.2 Aircraft Ground Operations ...............................................................................4 1.3 Fixed Path Towing System Concept ..................................................................6 II. REVIEW OF LITERATURE....................................................................................8 III. MODEL DEVELOPMENT AND VALIDATION ...............................................14 3.1 Airport Terminal Survey ..................................................................................14 3.2 Trajectory Modelling .......................................................................................19 3.3 Geometric Representation ................................................................................21 3.4 Model Equations ..............................................................................................23 3.5 Simulation ........................................................................................................25 3.6 Experiment and Validation ..............................................................................30 3.7 Experiment ......................................................................................................31 3.7.1 Airplane Model .......................................................................................31 3.7.2 Foam Board .............................................................................................32 3.7.3 Experimental Procedure ..........................................................................33 3.7.4 Comparing the Results ............................................................................34 3.7.5 Quantification of Measurement Deviation..............................................37 3.8 Verification with Airplane Characteristics Manual .........................................38 IV. FEASIBILITY ASSESSMENT AND PATH IMPROVEMENT .........................45 4.1 Application of Trajectory and Swept Area ......................................................45 4.2 Analysis of Pull-in and Pushback ....................................................................47 4.3 Offset Angle Analysis with Dolly....................................................................51 4.4 Feasible Path Identification .............................................................................52 4.4.1 Path Improvement ...................................................................................64 4.4.2 Alternative Path ......................................................................................69 4.4 Path Analysis ..................................................................................................73 V. CONCLUSION AND FUTURE WORK ..............................................................78 5.1 Conclusion .......................................................................................................78 v Chapter Page 5.2 Future Work ...........................................................................................................79 REFERENCES ............................................................................................................80 APPENDICES .............................................................................................................83 vi LIST OF TABLES Table Page Table 3.1: Example Aircraft Details .........................................................................16 Table 3.2: Aircraft Dimensions in B737 Units .........................................................17 Table 3.3: RSME values of Track Points..................................................................38 Table 3.4: Coordinate Values of Simulation and Aircraft Manual ...........................40 Table 4.1: Aircraft Wheel Dimensions and Allowable Offset Angles for Dolly......51 Table 4.2: Offset Angle for Initial Path ....................................................................59 Table 4.3: Offset Angle for Improved Path ..............................................................66 Table 4.4: Offset Angle for Alternative Path ............................................................70 vii LIST OF FIGURES Figure Page Figure 1.1: Aircraft Collision during Pushback ..........................................................3 Figure 1.2: Typical Airport Layout .............................................................................4 Figure 1.3: Boeing 737-800 with tug ..........................................................................5 Figure 1.4: Aircraft Towing System Architecture ......................................................6 Figure 2.1: MLG off the Prepared Taxiway ...............................................................9 Figure 2.2: Inner Tractrix of an Aircraft Towed along a Circular Path ....................10 Figure 2.3: Outer Tractrix of an Aircraft Towed along a Circular Path ...................10 Figure 2.4: Ackerman tricycle and turn radii for Boeing 737-400 ...........................11 Figure 2.5: Aircraft U turn maneuver .......................................................................12 Figure 3.1: Alexandria International Airport ............................................................15 Figure 3.2: Dallas-Fort Worth International Airport ................................................15 Figure 3.3: Boeing 737-900 ER Dimensions ............................................................18 Figure 3.4: Point Definition for Airplane Model Geometry .....................................19 Figure 3.5: Geometric Representation ......................................................................22 Figure 3.6: Input Details for Simulation ...................................................................25 Figure 3.7: Example Path ..........................................................................................26 Figure 3.8: NLG Path for Simulation .......................................................................26 Figure 3.9: Path Creator ............................................................................................27 Figure 3.10: Path for B-737 and Angular representation of Aircraft Start position ...............................................................................................27 Figure 3.11-a : Nose Angle 0 Degrees ......................................................................28 Figure 3.11-b: Nose Angle 45 Degrees.....................................................................29 Figure 3.11-c: Nose Angle 330 Degrees ...................................................................29 Figure 3.12: Scaled Model of B737 ..........................................................................31 Figure 3.13: Arrangement of Foam Board with Boeing 737 cut out ........................32 Figure 3.14: Experimental Track Results .................................................................33 viii Figure Page Figure 3.15-a: Experiment vs Simulation for Track Point-1 ....................................34 Figure 3.15-b: Experiment

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    123 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us