Demystifying the Diverse IR Seds of Type-1 Agns from Z~0 To

Demystifying the Diverse IR Seds of Type-1 Agns from Z~0 To

DemystifyingDemystifying thethe DiverseDiverse IRIR SEDsSEDs ofof Type-1Type-1 AGNsAGNs fromfrom z~0z~0 toto z~6z~6 Jianwei Lyu (Advisor: George H. Rieke) Steward Observatory, University of Arizona [email protected] Dusting the Universe Tucson, AZ. March 5, 2019 AGN Spectral Energy Distribution (SED) ← X-ray (not shown) UV optical NIR MIR FIR Radio→ Elvis+1994 ← X-ray (not shown)AGN Spectral Energy Distribution (SED) Elvis+1994 UV optical NIR MIR FIR accretion disk Urry & Padovani 1995 torus Radio Hot ~800-1800 K → 1.3 um Warm ~200-600 K 3 um < 100 K Cold 20 um The quasar SED seems universal... ← X-ray (not shown) UV optical NIR MIR FIR Radio→ Elvis+1994 47 low-z quasars Richards+2006 259 quasars Shang+2011 85 quasars with new data Scott & Stewart 2014 237 sources 761 sources Leipski+2014 24 z=5-6 quasars w/ Herschel detections We are here 6 4 2 1 0.5 0 redshift 6 4 2 1 0.5 0 Jiang+2010 redshift 1 O S Q (hot-)dust-free quasarsal m or N (Z=6.08) Power-law compoent (Z=5.85) Tsai+2015 6 4 2 1 0.5 0 hot-dust-obscured galaxies Jiang+2010 redshift 1 O S Q (hot-)dust-free quasarsal m or N (Z=6.08) Power-law compoent (Z=5.85) Hamann+17 Tsai+2015 extremely red quasars 6 4 2 1 0.5 0 hot-dust-obscured galaxies Jiang+2010 redshift 1 O S Q (hot-)dust-free quasarsal m or N (Z=6.08) Power-law compoent (Z=5.85) Hamann+17 Tsai+2015 extremely red quasars Xu+2015 mid-IR warm-excess AGN Host IR 6 4 2 1 0.5 0 hot-dust-obscured galaxies AGN Jiang+2010 redshift stars 1 O S Q (hot-)dust-free quasarsal m or N (Z=6.08) Power-law compoent (Z=5.85) Hamann+17 Tsai+2015 extremely red quasars Xu+2015 mid-IR warm-excess AGN 6 4 2 1 0.5 0 hot-dust-obscured galaxies Jiang+2010 z? redshift 1 O S Q (hot-)dust-free quasarsal m or N (Z=6.08) Power-law compoent Pecuilar AGNs only at high- Can be reconciled with low-z objects? (Z=5.85) What causes these SED variations? Di Matteo, Springel & Hernquist 2005 Di Matteo, Springel & Hernquist 2005 Urry & Padovani 1995 (Hoenig+ 2013)Di Matteo, Springel & Hernquist 2005 Urry & Padovani 1995 Smooth: Pier & Krolik 92, Loska+ 93, Rowan- Robinson+ 93, Granato & Danese 94, Schartmann+ 05, 06, Fritz+ 06, Jud+17 Clumpy: Rowan-Robinson 1995, Heymann & Siebenmorgen 2012, , Stalevski+ 12, 16, Cat3D (Honig+ 06), RADMC (Dullemond & van Bemmel 05), Schartmann+ 2008, Clumpy (Nenkova+ 2008) Smooth + Clumpy: Siebenmorgen+15 Addition of polar dust:: Honig+17, Stalevski+17 (Hoenig+ 2013)Di Matteo, Springel & Hernquist 2005 Urry & Padovani 1995 Smooth: Pier & Krolik 92, Loska+ 93, Rowan- Robinson+ 93, Granato & Danese 94, Schartmann+ 05, 06, Fritz+ 06, Jud+17 Clumpy: Rowan-Robinson 1995, Heymann & Siebenmorgen 2012, , Stalevski+ 12, 16, Cat3D (Honig+ 06), RADMC (Dullemond & van Bemmel 05), Schartmann+ 2008, Clumpy (Nenkova+ 2008) Smooth + Clumpy: Siebenmorgen+15 Addition of polar dust:: Honig+17, Stalevski+17 Too many degeneracies in the current radiative transfer models for AGN IR emission... What are the ranges of AGN intrinsic IR SED variations? Two kinds of dust-deficient quasars Normal AGN Normal AGN Hot Dust Deficient Warm Dust Deficient (HDD) AGN (WDD) AGN Hot-dust-deficient quasars Warm-dust-deficient quasars (lower Eddington ratio) (higher AGN luminosity) Z<0.5 PG sample ~17-22 % ~14-17% Z~0.5-2.5 LoCuSS sample ~4% ~2% Z~5-6.5 Leipski sample ~16% >14%~50% Lyu, Rieke & Shi 2017 Dust-deficient quasars at z>5 HDD template PG 0049+171 (the most HDD case in the PG sample) SEDs of the so-called “dust-free” quasars Stacked SED of Herschel non-detected z>5 quasars Lyu, Rieke & Shi 2017 Quasar 3C 273 (PG 1226+023) Seyfert nucleus in NGC 3783 13 L ~ 1011 L LAGN ~ 10 Lsun AGN sun What about Seyfert nuclei? aka, relatively low-luminosity AGNs 8 11 with LAGN ~ 10 – 10 Lsun 11 14 (for quasars, LAGN ~ 10 – 10 Lsun) Composite SED of Seyfert-1 nuclei ~30 low-z Seyfert-1 nuclei observed by SDSS and Spitzer/IRS without evidence of star-formation in the mid-IR. Photometry data are compiled from XMM-newton/Chandra, GALEX, SDSS, 2MASS, WISE, Spitzer/IRS J. Lyu & G. Rieke 2018 Composite SED of Seyfert-1 nuclei ~30 low-z Seyfert-1 nuclei observed by SDSS and Spitzer/IRS without evidence of star-formation in the mid-IR. Photometry data are compiled from XMM-newton/Chandra, GALEX, SDSS, 2MASS, WISE, Spitzer/IRS J. Lyu & G. Rieke 2018 AGN polar dust emission has been indeed observed! Sy st em a xis Mid-IR interferometry observations of type-1 AGN in NGC 3783 by Hoenig et al. 2013 (Also see e.g., Raban+2009, Hoenig+2012, Tristram+2014, Lopz-Gonzaga+2016, Leftley+2018) ~30 low-z Seyfert-1 nuclei observed by SDSS and Spitzer/IRS without evidence of star-formation in the mid-IR. Photometry data are compiled from XMM-newton/Chandra, GALEX, SDSS, 2MASS, WISE, Spitzer/IRS J. Lyu & G. Rieke 2018 Let’s build an reddened type-1 AGN model... 1. Accretion disk + torus (a face-on viewpoint) described by intrinsic AGN templates: Normal, WDD, HDD from Lyu et al. 2017a, b 2. Possible obscuration by an extended dust component Radial density profile Classical silicate:graphite mixture with grain size distribution dn/da ~ a^(-3.5) but allowing a_max and a_min to be changed 3. 1-D radiation transfer calculations with the DUSTY (Ivezic et al. 2017) code J. Lyu & G. Rieke 2018 Reproducing the observations of NGC 3783 (the first type-1 AGN with robust polar dust emission constraints) High-spatial-resolution data adopted from J. Lyu & G. Rieke 2018 Prieto+2010, Garcia-Gonzalez+2016 Geometry Grain properties Density profile: ρ(r) ~ r^{-0.5} Standard ISM mixture (sil:gra=0.53:0.47) Outer-to-inner radius r_out/r_in = 500 Standard grain size distribution p=3.5 Inner Boundary T_in = 1500 K Larger size cutoffs a_min = 0.04 um, a_max = 10 um Reproducing the observations of NGC 3783 (the first type-1 AGN with robust polar dust emission constraints) Three known type-1 AGNs with the detections of Mid-IR polar dust emission Name F(polar)/F(total) at lambda ~ 10 microns Mid-IR interferometry our SED analysis NGC 3783 ~60-80% ~75% (Hoenig et al. 2013) NGC 4507 ~75% ~78% Geometry (Lopez-Gonzaga et al. 2016)Grain properties Density profile:High-spatial-resolution ρ(r) ~ r^{-0.5} data adopted from Standard ISM mixtureJ. Lyu & (sil:gra=0.53:0.47) G. Rieke 2018 Outer-to-innerESO 323-77 Prieto+2010, radius Garcia-Gonzalez+2016 r_out/r_in ~35% = 500 Standard grain size ~30% distribution p=3.5 Inner Boundary T_in = (Leftley 1500 et K al. 2018) Larger size cutoffs a_min = 0.04 um, a_max = 10 um The Low-z Seyfert-1 sample with AGN-dominated MIR emission •Nearby type-1 AGNs with subarcsec-resolution mid-IR observations •A subset of the Asmus et al. (2014) sample with Sy 1-1.5 •No extended mid-IR emission by comparing the ground-based subarsec 10-12 micron photometry and the WISE W4 (~12 arcsec FWHM) flux •Broad-line AGNs that observed by SDSS and Spitzer/IRS •FWHM(Hα) > 1200 km/s from optical spectral decomposition •11.3 PAH EW < 0.1 micron & star-forming (SF) contribution at 5-15 micron < 5% • In total, 64 type-1 nuclei with weak evidence of mid-IR SF at z=0.002-0.2 Reproducing the IR SEDs of individual Seyfert-1 nuclei Photometry data from 2MASS, WISE, Spitzer, AKARI, Herschel, etc. 3-component SED model: AGN + stars (+ SF_dust) Two parameters for the SED shape of the AGN Component: 1) intrinsic type 2) optical depth, τV (everything else follows NGC 3783) J. Lyu & G. Rieke 2018 Reproducing the IR SEDs of individual Seyfert-1 nuclei The vast majority have very good fittings ~80% of the sample have τV ≤ 2 ~30% of the sample are directly matched by the intrinsic templates J. Lyu & G. Rieke 2018 Why could this simple model work?! NGC 424 NGC 1068 Polar dust MCG-5-23-16 NGC 4507 NGC 3783 Circinus Polar dust NGC 5506 López-Gonzaga, N. et al. 2016 Why could this simple model work?! NGC 424 NGC 1068 Polar dust MCG-5-23-16 NGC 4507 NGC 3783 Circinus Polar dust NGC 5506 López-Gonzaga, N. et al. 2016 Why could this simple model work?! B (T, r)= B (r) A small dusty cloud λ λ τV,c r a light source V-band (0.55 um) J. Lyu & G. Rieke 2018 Why could this simple model work?! Why could this simple model work?! Why could this simple model work?! total SED: Once the radial distribution,ρ(r), is settled, the SED of optically-thin dust emission does not care much about the geometry (along ө and φ directions), neither the observing angle! Why could this simple model work?! total SED: Extinction efficiency of an LTE dust element total optical depth: The amount of dust The dust environment of a typical Seyfert nucleus Key features of the polar dust comp. Integrated optical depth τV ~ 0 – 5 Density profile: ρ(r) ~ r^{-0.5} Large dust grains a_min ~ 0.04 um a_max ~ 10 um Dust temperatures Inner Boundary T_in ~ 1500 K Most common T_peak ~ 120 K 11 For a LAGN~10 Lsun AGN in a 11 Mstar~10 Msun main-sequence galaxy, 2 polar dust rout ~ a few*10 pc The dust mass 8 Host ISM ~ 10 Msun 5 AGN polar dust ~ 10 Msun J.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    56 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us