EVIDENCE in the SCIENCE of READING 1 How the Science Of

EVIDENCE in the SCIENCE of READING 1 How the Science Of

EVIDENCE IN THE SCIENCE OF READING 1 How the Science of Reading Informs 21st Century Education Yaacov Petscher Sonia Q. Cabell Hugh W. Catts Donald L. Compton Barbara R. Foorman Sara A. Hart Christopher J. Lonigan Beth M. Phillips Christopher Schatschneider Laura M. Steacy Nicole Patton Terry Richard K. Wagner Florida Center for Reading Research Florida State University EVIDENCE IN THE SCIENCE OF READING 2 Author note: First author was determined by group consensus. Authors equally contributed and are listed and alphabetically. The authors’ work was supported by funding from the Chan Zuckerberg Initiative, the Institute of Education Sciences (R305A160241, R305A170430, R305F100005, R305F100027, R324A180020, R324B19002) and Eunice Kennedy Shriver National Institute of Child Health and Human Development (P50HD52120, P20HD091013, HD095193, HD072286). Correspondence concerning this article may be directed to Yaacov Petscher, [email protected]. Reference: Petscher, Y., Cabell, S.Q., Catts, H.W., Compton, D.L., Foorman, B.R., Hart, S.A., Lonigan, C.J., Phillips, B.M., Schatschneider, C., Steacy, L.M., Terry, N.P., & Wagner, R.K. (in press). How the science of reading informs 21st century education. Reading Research Quarterly. EVIDENCE IN THE SCIENCE OF READING 3 Abstract The science of reading should be informed by an evolving evidence base built upon the scientific method. Decades of basic research and randomized controlled trials of interventions and instructional routines have formed a substantial evidence base to guide best practices in reading instruction, reading intervention, and the early identification of at-risk readers. The recent resurfacing of questions about what constitutes the science of reading is leading to misinformation in the public space that may be viewed by educational stakeholders as merely differences of opinion among scientists. Our goals in this paper are to revisit the science of reading through an epistemological lens to clarify what constitutes evidence in the science of reading and to offer a critical evaluation of the evidence provided by the science of reading. To this end, we summarize those things that we believe have compelling evidence, promising evidence, or a lack of compelling evidence. We conclude with a discussion of areas of focus that we believe will advance the science of reading to meet the needs of all children in the 21st century. EVIDENCE IN THE SCIENCE OF READING 4 How the Science of Reading Informs 21st Century Education For more than 100 years, the question of how best to teach children to read has been debated in what has been termed the “reading wars”. The debate cyclically fades into the background only to reemerge, often with the same points of conflict. We believe that this cycle is not helpful for promoting the best outcomes for children’s educational success. Our goal in this paper is to make an honest and critical appraisal of the science of reading, defining what it is, how we build a case for evidence, summarizing those things for which the science of reading has provided unequivocal answers, providing a discussion of things we do not know but that may have been “oversold,” identifying areas for which evidence is promising but not yet compelling, and thinking ahead about how the science of reading can better serve all stakeholders in children’s educational achievements. At its core, scientific inquiry is the same in all fields. Scientific research, whether in education, physics, anthropology, molecular biology, or economics, is a continual process of rigorous reasoning supported by a dynamic interplay among methods, theories, and findings. It builds understandings in the form of models or theories that can be tested. Advances in scientific knowledge are achieved by the self-regulating norms of the scientific community over time, not, as sometimes believed, by the mechanistic application of a particular scientific method to a static set of questions (National Research Council, 2002, p. 2). What is the Science of Reading and Why are we Still Debating it? The “science of reading” is a phrase representing the accumulated knowledge about reading, reading development, and best practices for reading instruction obtained by the use of the scientific method. We recognize that the accrual of scientific knowledge related to reading is ever evolving, at times circuitous, and not without controversy. Nonetheless, the knowledge base on the science of reading is vast. In the last decade alone, over 14,000 peer-reviewed articles EVIDENCE IN THE SCIENCE OF READING 5 have been published in journals that included the keyword “reading” based on a PsycINFO search. Although many of these studies likely focused on a sliver of the reading process individually, collectively, research studies with a focus on reading have yielded a substantial knowledge base of stable findings based on the science of reading. Taken together, the science of reading helps a diverse set of educational shareholders across institutions (e.g., preschools, schools, universities), communities, and families to make informed choices about how to effectively promote literacy skills that foster healthy and productive lives (DeWalt & Hink, 2009; Rayner et al., 2001). An interesting question concerning the science of reading is “Why is there a debate surrounding the science of reading?” Although there are certainly disputes within the scientific community regarding best practices and new areas of research inquiry, most of the current debate seems to settle upon what constitutes scientific evidence, how much value we should place on scientific evidence as opposed to other forms of knowledge, and how preservice teachers should be instructed to teach reading (Brady, 2020). The current disagreement in what constitutes the scientific evidence of reading (e.g., Calkins, 2020) is not new. During the last round of the “reading wars” in the late 1990’s and early 2000’s these same issues were discussed and debated. Much of the debate focused on conflicting views in epistemology between constructivists and positivists on the basic mechanisms associated with reading development. Constructivists, such as Goodman (1967) and Smith (1971), believed that reading was a “natural act” akin to learning language and thus emphasized giving children the opportunity to discover meaning through experiences in a literacy-rich environment. In contrast, positivists, such as Chall (1967) and Flesch (1955), made strong distinctions between innate language learning and the effortful learning required to acquire reading skills. Positivists argued for explicit instruction to help foster EVIDENCE IN THE SCIENCE OF READING 6 understanding of how the written code mapped onto language, whereas constructivists encouraged children to engage in a “psycholinguistic guessing game” in which readers use their graphic, semantic, and syntactic knowledge (known as the three-cuing system) to guess the meaning of a printed word. Research clearly indicates that skilled reading involves the consolidation of orthographic and phonological word forms (Dehene, 2011). Work in cognitive neuroscience indicates that a small region of the left ventral visual cortex becomes specialized for this purpose. As children learn to read, they recruit neurons from a small region of the left ventral visual cortex within the left occipitotemporal cortex region (i.e., visual word form area) that are tuned to language- dependent parameters through connectivity to perisylvian language areas (Dehaene-Lambertz et al., 2018). This provides an efficient circuit for grapheme-phoneme conversion and lexical access allowing efficient word-reading skills to develop. These studies provide direct evidence for how teaching alters the human brain by repurposing some visual regions toward the shapes of letters, suggesting that cultural inventions, such as written language, modify evolutionarily older brain regions. Furthermore, studies suggest that instruction focusing on the link between orthography and phonology promote this brain reorganization (e.g., Dehaene, 2011). Yet, arguments between philosophical constructivists and philosophical positivists on what constitutes the science of reading and how it informs instruction remain active today (e.g., Castles et al., 2018). In a recent interview with Emily Hanford, Ken Goodman defended his advocacy for the three-cuing system saying that the three-cueing theory is based on years of observational research – “In his view, the three-cueing system is perfectly valid, drawn from a different kind of evidence than what scientists collect in their labs. ‘My science is different.’ Goodman said.” (Hanford, 2019). Without question, observational research maintains an EVIDENCE IN THE SCIENCE OF READING 7 important place in science (see our section on How We Build a Case for Compelling Evidence), but observational research devoid of rigorous methodology, testing, and replication produces spurious results and leads to biased inferences (Guyatt et al., 2011). As scientists at the Florida Center for Reading Research, we are often frustrated when what we view to be the empirically supported evidence base about the reading process are distorted or denied in communications directed to the public and to teachers. However, Stanovich (2003) posited that “in many cases, the facts are secondary—what is being denied are the styles of reasoning that gave rise to the facts; what is being denied is closer to a worldview than an empirical finding. Many of these styles are implicit; we are

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    55 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us