Modeling the Inspiral and Gravitational Wave

Modeling the Inspiral and Gravitational Wave

ECCENTRIC COMPACT BINARIES: MODELING THE INSPIRAL AND GRAVITATIONAL WAVE EMISSION by Nicholas Peter Loutrel A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics MONTANA STATE UNIVERSITY Bozeman, Montana April 2018 c COPYRIGHT by Nicholas Peter Loutrel 2018 All Rights Reserved ii DEDICATION I dedicate this to my parents, Brian Charles Loutrel & Annette Marie Manzo Loutrel; without their endless love and support, this dissertation would not be possible. iii ACKNOWLEDGEMENTS I would like to thank my Ph.D. advisor, Nicol´asYunes (NY), for providing invaluable advice and helping me become a professional researcher. Further, I would like to thank K. G. Arun, Alejandro Cardenas-Avenda~no,Katerina Chatziioannou, Neil Cornish, Samuel Liebersbach, Sean McWilliam, and Frans Pretorius (FP) for supporting this work through discussions and collaborations. This research was supported by National Science Foundation grants PHY- 1065710 (FP), PHY-1305682 (FP), PHY-1114374 (NY), PHY-1250636 (NY), EAPSI Award No. 1614203, NASA grant NNX11AI49G, under sub-award 00001944 (FP and NY), the Simons Foundation (FP). iv TABLE OF CONTENTS 1. INTRODUCTION ........................................................................................1 2. ECCENTRIC BINARIES IN GENERAL RELATIVITY...............................10 Radiation Reaction in General Relativity ..................................................... 10 Basics................................................................................................. 10 Quasi-Keplerian Parametrization.......................................................... 14 Averaging and Enhancement Factors .................................................... 20 Fourier Decomposition of Multipole Moments............................................... 24 Multipole Moments at Newtonian Order............................................... 24 Mass Quadruple at 1PN Order............................................................. 27 3. HEREDITARY EFFECTS IN ECCENTRIC COMPACT BINARY INSPIRALS................................................................................................32 Energy & Angular Momentum Fluxes: Tail Effects ....................................... 35 Integral Definitions and Orbit-Averages ................................................ 36 Tail Enhancement Factors.................................................................... 39 Tail Fluxes: Resummation of Asymptotic Enhancement Factors .................... 45 Asymptotic Resummation Method for the Enhancement factors............. 45 Superasymptotic Enhancement Factors................................................. 52 Hyperasymptotic Enhancement Factors ................................................ 61 Discussion .................................................................................................. 68 4. ECCENTRIC GRAVITATIONAL WAVE BURSTS IN THE POST- NEWTONIAN FORMALISM......................................................................71 Constructing Burst Models.......................................................................... 74 The Newtonian Burst Model ................................................................ 74 Orbit Evolution ........................................................................... 75 Centroid Mapping........................................................................ 78 Volume Mapping.......................................................................... 81 The Inverse Problem and Degeneracies ................................................. 83 A Simplified Formalism ....................................................................... 84 A Generic PN Formalism ............................................................................ 88 Example PN Burst Models................................................................... 94 Burst Model at 1PN Order ........................................................... 95 Burst Model at 2PN Order ........................................................... 97 Burst Model at 3PN Order ......................................................... 100 Properties of the PN Burst Model ............................................................. 105 v TABLE OF CONTENTS { CONTINUED Accuracy of the Burst Model ............................................................. 105 Pericenter Braking............................................................................. 108 Discussion ................................................................................................ 114 5. PARAMETERIZED POST-EINSTEINIAN FRAMEWORK FOR GRAVITATIONAL WAVE BURSTS ......................................................... 117 Kepler Problem in the ppE Formalism ....................................................... 122 Modeling Beyond GR................................................................................ 126 Size of Tiles ...................................................................................... 127 Mapping Between Tiles...................................................................... 128 A Parameterized-Post Einsteinian Burst Framework............................ 130 Burst Models in Modified Gravity.............................................................. 132 Einstein-Dilaton-Gauss-Bonnet Gravity .............................................. 132 Brans-Dicke Theory of Gravity........................................................... 137 Projected Constraints........................................................................ 141 Discussion ................................................................................................ 145 6. SECULAR GROWTH OF ECCENTRICITY IN THE LATE IN- SPIRAL ................................................................................................... 147 Radiation Reaction Force .......................................................................... 147 Multiple Scale Analysis ............................................................................. 151 Properties of Secular Growth..................................................................... 157 7. SUMMARY.............................................................................................. 163 REFERENCES CITED.................................................................................. 167 APPENDICES .............................................................................................. 182 APPENDIX A : Fourier Coefficients of the Mass Octopole and Current Quadrupole............................................................................ 183 APPENDIX B : Pad´eApproximant Coefficients......................................... 185 APPENDIX C : Post-Newtonian Recursion Relations................................. 187 APPENDIX D : Third Post-Newtonian Quasi-Keplerian Parametrization .... 190 PN Vector Fields ...................................................................................... 191 1PN Amplitude Vector Fields............................................................. 191 Amplitude Vector Fields to 3PN Order............................................... 195 APPENDIX E : Harmonic Decomposition of the Radiation Reac- tion Force........................................................................................... 202 vi LIST OF TABLES Table Page 2 3.1 Leading order dependence on = 1 − et of the integrals in Eq. (3.67) for various positive powers of n. ....................................... 51 4.1 Initial values of the PN expansion parameter x for the set of compact binary systems studied. The values are obtained by requiring the initial GW frequency to be 10Hz. The final column provides an estimate of the semi-major axis of the binary, since ar = M=x + O(1) in PN theory................................... 107 vii LIST OF FIGURES Figure Page 2.1 Diagram of Keplerian elliptical orbits in an effective one body frame. A point mass µ orbits around a central mass m located at the focus of the ellipse. The semi-major axis a, ~ pericenter distance rp, and orbital angular momentum L are constants of the orbit when radiation reaction is neglected. The orbital radius r is the line connecting m and µ, while the true anomaly V is the angle from pericenter, which is located along the x-axis, to r. The eccentric anomaly u is the angle measured from the x-axis to a line whose end points are the center of the ellipse and a point on a circle that is concentric to the ellipse and of radius a, where the end point on the circle is determined by a line parallel to the y-axis that passes through µ. ..................................................... 16 3.1 Accuracy of the uniform asymptotic expansion of the Bessel function Jp(pet) as a function of p and for eccentricity et = 0:9. Going to higher order in the asymptotic expansion causes the series to become more accurate compared to the Bessel function, but at sixth order in 1=p, the relative error achieves a minimum. ....................................................................... 48 3.2 Accuracy of the asymptotic series for the enhancement factor '(et). The relative error to numerical results increases as we go to higher order in the series, but 2 −2 reaches a minimum at O [(1 − et ) ]. The series can thus be optimally truncated at this order, generating the superasymptotic series for '(et). ...................................................... 54 3.3 Comparison of the numerical results for '(et) with its hyperasymptotic series, 'hyper(et), at different orders in

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    215 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us