Completeness in Quasi-Pseudometric Spaces—A Survey

Completeness in Quasi-Pseudometric Spaces—A Survey

<p><a href="/goto?url=http://www.mdpi.com/journal/mathematics" target="_blank"><strong>mathematics </strong></a></p><p>Article </p><p><strong>Completeness in Quasi-Pseudometric Spaces—A Survey </strong></p><p><strong>S¸tefan Cobzas </strong></p><p>Faculty of Mathematics and Computer Science, Babes¸-Bolyai University, 400 084 Cluj-Napoca, Romania; <a href="mailto:[email protected]" target="_blank">[email protected] </a></p><p><a href="/goto?url=https://www.mdpi.com/2227-7390/8/8/1279?type=check_update&amp;version=2" target="_blank">ꢀꢁꢂꢀꢃꢄꢅꢆꢇ </a></p><p><a href="/goto?url=https://www.mdpi.com/2227-7390/8/8/1279?type=check_update&amp;version=2" target="_blank"><strong>ꢀꢁꢂꢃꢄꢅꢆ </strong></a></p><p>Received:17 June 2020; Accepted: 24 July 2020; Published: 3 August 2020 </p><p><strong>Abstract: </strong>The aim of this paper is to discuss the relations between various notions of sequential completeness and the corresponding notions of completeness by nets or by filters in the setting of </p><ul style="display: flex;"><li style="flex:1">quasi-metric spaces.&nbsp;We propose a new definition of right </li><li style="flex:1">K-Cauchy net in a quasi-metric space </li></ul><p>for which the corresponding completeness is equivalent to the sequential completeness.&nbsp;In this way we complete some results of R. A. Stoltenberg, Proc.&nbsp;London Math.&nbsp;Soc. 17 (1967), 226–240, and V. Gregori and J. Ferrer, Proc.&nbsp;Lond. Math. Soc.,&nbsp;III Ser., 49 (1984), 36.&nbsp;A discussion on nets </p><p>defined over ordered or pre-ordered directed sets is also included. </p><p><strong>Keywords: </strong>metric space; quasi-metric space; uniform space; quasi-uniform space; Cauchy sequence; </p><p>Cauchy net; Cauchy filter; completeness <strong>MSC: </strong>54E15; 54E25; 54E50; 46S99 </p><p><strong>1. Introduction </strong></p><p>It is well known that completeness is an essential tool in the study of metric spaces, particularly </p><p>for fixed points results in such spaces. The study of completeness in quasi-metric spaces is considerably </p><p>more involved, due to the lack of symmetry of the distance—there are several notions of completeness </p><p>all agreing with the usual one in the metric case (see [ in proving fixed point results in quasi-metric spaces as it is shown by some papers on this topic as, for instance, [&nbsp;] (see also the book [&nbsp;]). A survey on the relations between completeness and the <br>1] or [2]). Again&nbsp;these notions are essential <br>3– </p><p></p><ul style="display: flex;"><li style="flex:1">6</li><li style="flex:1">7</li></ul><p></p><p>existence of fixed points in various circumstances is given in [8]. </p><p>It is known that in the metric case the notions of completeness by sequences, by nets and by </p><p>filters all agree and, further, the completeness of a metric space is equivalent to the completeness of </p><p>the associated uniform space (in all senses). In the present paper we show that, in the quasi-metric </p><p>case, these notions agree in some cases, but there are situations when they are different, mainly for the </p><p>notions of right-completeness. Such a situation was emphasized by Stoltenberg [9], who proposed a </p><p>notion of Cauchy net for which completeness agrees with the sequential completeness. Later Gregori </p><p>and Ferrer [10] found a gap in the proof given by Stoltenberg and proposed a new version of right </p><p>K</p><p>-Cauchy net for which sequential completeness and completeness by nets agree.&nbsp;In the present paper we include a discussion on this Gregori-Ferrer notion of Cauchy net and complete these results by proposing a notion of right- </p><p>completeness holds. </p><p>K-Cauchy net for which the equivalence with sequential </p><p><strong>2. Metric and Uniform Spaces </strong></p><p>For a mapping d : X × X → R on a set X consider the following conditions: </p><p></p><ul style="display: flex;"><li style="flex:1">Mathematics <strong>2020</strong>, 8, 1279; doi:<a href="/goto?url=http://dx.doi.org/10.3390/math8081279" target="_blank">10.3390/math8081279 </a></li><li style="flex:1"><a href="/goto?url=http://www.mdpi.com/journal/mathematics" target="_blank">ww</a><a href="/goto?url=http://www.mdpi.com/journal/mathematics" target="_blank">w</a><a href="/goto?url=http://www.mdpi.com/journal/mathematics" target="_blank">.</a><a href="/goto?url=http://www.mdpi.com/journal/mathematics" target="_blank">mdpi.com/journal/mathematics </a></li></ul><p></p><p>Mathematics <strong>2020</strong>, 8, 1279 </p><p>2 of 19 </p><p>(M1) (M2) (M3) (M4) <br>(M4<sup style="top: -0.3013em;">0</sup>) d(x, y) &gt; 0 and d(x, x) = 0; </p><p>d(x, y) = d(y, x); d(x, z) 6 d(x, y) + d(y, z); d(x, y) = 0 ⇒ x = y; d(x, y) = d(y, x) = 0 ⇒ x = y, </p><p>for all x, y, z ∈ X. </p><p>The mapping </p><p>d</p><p>is called a pseudometric if it satisfies (M1), (M2) and (M3). A pseudometric that </p><p>also satisfies (M4) is called a metric. <br>The open and closed balls in a pseudometric space (X, d) are defined by </p><p>B<sub style="top: 0.1738em;">d</sub>(x, r) = {y ∈ X : d(x, y) &lt; r} and B<sub style="top: 0.1738em;">d</sub>[x, r] = {y ∈ X : d(x, y) 6 r} , </p><p>(1) respectively. <br>A filter on a set X is a nonempty family F of nonempty subsets of X satisfying the conditions </p><p>(F1) (F2) </p><p>F ⊆ G and F ∈ F&nbsp;⇒ G ∈ F; </p><p>F ∩ G ∈ F&nbsp;for all&nbsp;F, G ∈ F. <br>It is obvious that (F2) implies </p><ul style="display: flex;"><li style="flex:1">(F2<sup style="top: -0.3013em;">0</sup>) </li><li style="flex:1">F<sub style="top: 0.1548em;">1</sub>, . . . , F<sub style="top: 0.1246em;">n </sub>∈ F&nbsp;⇒ F<sub style="top: 0.1548em;">1 </sub>∩ . . . ∩ F<sub style="top: 0.1246em;">n </sub>∈ F. </li></ul><p>for all n ∈ N and F<sub style="top: 0.1547em;">1</sub>, . . . , F<sub style="top: 0.1245em;">n </sub>∈ F. <br>A base of a filter F is a subset B of F such that every F ∈ F contains a B ∈ B. A nonempty family B of nonempty subsets of X such that </p><p>(BF1) </p><p>∀B<sub style="top: 0.1547em;">1</sub>, B<sub style="top: 0.1453em;">2 </sub>∈ B, ∃B ∈ B, B ⊆ B<sub style="top: 0.1547em;">1 </sub>∩ B<sub style="top: 0.1453em;">2 </sub>. </p><p>generates a filter F(B) given by </p><p>F(B) = {U ⊆ X : ∃ B ∈ B, B ⊆ U} . </p><p>A family B satisfying (BF1) is called a filter base. A relation ≤ on a set X is called a preorder if it is reflexive and transitive, that is, </p><p>(O1) x ≤ x and (O2) x ≤ y ∧ y ≤ z ⇒ x ≤ z , </p><p>for all x, y, z ∈ X. If the relation ≤ is further antireflexive, i.e. </p><p>(O3) x ≤ y ∧ y ≤ x ⇒ x = y , </p><p>for all </p><p>preordered (ordered) set, denoted as (X, ≤). </p><p>A preordered set (I <br>≤) is called directed if for every i<sub style="top: 0.1548em;">1</sub>, i<sub style="top: 0.1454em;">2 </sub>∈ I there exists j ∈ I with i<sub style="top: 0.1548em;">1 </sub>≤ j and </p><p>x</p><p></p><ul style="display: flex;"><li style="flex:1">,</li><li style="flex:1">y ∈ X, then </li></ul><p></p><p>≤</p><p>is called an order. A&nbsp;set </p><p>X</p><p>equipped with a preorder (order) </p><p>≤</p><p>is called a <br>,</p><p>i<sub style="top: 0.1453em;">2 </sub>≤ j. A net in a set </p><p>X</p><p>is a mapping <em>φ </em>: I → X, where (I, ≤) is a directed set. The alternative notation </p><p>(x<sub style="top: 0.1633em;">i </sub>: i ∈ I), where x<sub style="top: 0.1633em;">i </sub>= <em>φ</em>(i), i ∈ I, is also used. <br>A uniformity on a set X is a filter U on X × X such that </p><p>(U1) (U2) (U3) </p><p>∆(X) ⊆ U, ∀U ∈ U; </p><p>∀U ∈ U, ∃V ∈ U, such&nbsp;that V ◦ V ⊆ U , </p><p>∀U ∈ U, U<sup style="top: -0.3428em;">−1 </sup>∈ U. </p><p>Mathematics <strong>2020</strong>, 8, 1279 </p><p>3 of 19 </p><p>where <br>∆(X) = {(x, x) : x ∈ X} denotes the diagonal of&nbsp;X, </p><p>M ◦ N = {(x, z) ∈ X × X : ∃y ∈ X, (x, y) ∈ M and (y, z) ∈ N}, and </p><p>M<sup style="top: -0.3429em;">−1 </sup>= {(y, x) : (x, y) ∈ M} , </p><p>for any M, N ⊆ X × X. </p><p>The sets in&nbsp;are called entourages. A base for a uniformity </p><p></p><ul style="display: flex;"><li style="flex:1">U</li><li style="flex:1">U</li></ul><p></p><p>is a base of the filter </p><p>U</p><p>.<br>The composition V ◦ V is denoted sometimes simply by V<sup style="top: -0.3013em;">2</sup>. Since every entourage contains the </p><p>diagonal ∆(X), the inclusion V<sup style="top: -0.3013em;">2 </sup>⊆ U implies V ⊆ U. <br>For U ∈ U, x ∈ X and Z ⊆ X put </p><p>[</p><p>U(x) = {y ∈ X : (x, y) ∈ U} and U[Z] =&nbsp;{U(z) : z ∈ Z} . </p><p>A uniformity </p><p>base of neighborhoods of any point x ∈ X. </p><p>Let (X d) be a pseudometric space. Then the pseudometric </p><p>{B<sub style="top: 0.1738em;">d</sub>(x, r) : r &gt; 0}, is a base of neighborhoods for every x ∈ X. </p><p></p><ul style="display: flex;"><li style="flex:1">The pseudometric </li><li style="flex:1">generates also a uniform structure U<sub style="top: 0.1737em;">d </sub>on </li></ul><p></p><p>the sets </p><p>U</p><p>generates a topology <em>τ</em>(U) on </p><p>X</p><p>for which the family of sets {U(x) : U ∈ U} is a </p><p>,</p><p>d</p><p>generates a topology <em>τ</em><sub style="top: 0.1738em;">d </sub>for which </p><p></p><ul style="display: flex;"><li style="flex:1">d</li><li style="flex:1">X</li></ul><p></p><p>having as basis of entourages </p><p>U<sub style="top: 0.1245em;"><em>ε </em></sub>= {(x, y) ∈ X × X : d(x, y) &lt; <em>ε</em>}, <em>ε </em>&gt; 0 . </p><p>Since </p><p>U<sub style="top: 0.1246em;"><em>ε</em></sub>(x) = B<sub style="top: 0.1737em;">d</sub>(x, <em>ε</em>), x ∈ X, <em>ε </em>&gt; 0, </p><p>it follows that the topology <em>τ</em>(U<sub style="top: 0.1737em;">d</sub>) agrees with the topology <em>τ</em><sub style="top: 0.1737em;">d </sub>generated by the pseudometric d. </p><p></p><ul style="display: flex;"><li style="flex:1">A sequence (x<sub style="top: 0.1245em;">n</sub>) in (X </li><li style="flex:1">d) is called Cauchy (or fundamental) if for every <em>ε </em>&gt; 0 there exists n<sub style="top: 0.1245em;"><em>ε </em></sub>∈ N </li></ul><p></p><p>such that </p><p>,</p><p>d(x<sub style="top: 0.1246em;">n</sub>, x<sub style="top: 0.1246em;">m</sub>) &lt; <em>ε </em>for all&nbsp;m, n ∈ N with m, n &gt; n<sub style="top: 0.1246em;"><em>ε </em></sub>, a condition written also as lim d(x<sub style="top: 0.1245em;">m</sub>, x<sub style="top: 0.1245em;">n</sub>) = 0 . </p><p>m,n→∞ </p><p>A sequence (x<sub style="top: 0.1246em;">n</sub>) in a uniform space (X </p><p>U ∈ U there exists n<sub style="top: 0.1245em;"><em>ε </em></sub>∈ N such that </p><p></p><ul style="display: flex;"><li style="flex:1">,</li><li style="flex:1">U) is called U-Cauchy (or simply Cauchy) if for every </li></ul><p></p><p>(x<sub style="top: 0.1245em;">m</sub>, x<sub style="top: 0.1245em;">n</sub>) ∈ U for all&nbsp;m, n ∈ N with m, n &gt; n<sub style="top: 0.1245em;"><em>ε </em></sub>. </p><p></p><ul style="display: flex;"><li style="flex:1">It is obvious that, in the case of a pseudometric space (X d), a sequence is Cauchy with respect to </li><li style="flex:1">,</li></ul><p></p><p>the pseudometric d if and only if it is Cauchy with respect to the uniformity U<sub style="top: 0.1738em;">d</sub>. </p><p>The Cauchyness of nets in pseudometric and in uniform spaces is defined by analogy with that </p><p>of sequences. </p><p>A filter </p><p>there exists F ∈ F such that </p><p>F</p><p></p><ul style="display: flex;"><li style="flex:1">in a uniform space (X </li><li style="flex:1">,</li><li style="flex:1">U) is called U-Cauchy (or simply Cauchy) if for every U ∈ U </li></ul><p></p><p>F × F ⊆ U . </p><p><strong>Definition 1.&nbsp;</strong>A pseudometric space (X </p><p></p><ul style="display: flex;"><li style="flex:1">A uniform space (X </li><li style="flex:1">U) is called sequentially complete if every U-Cauchy sequence in </li></ul><p></p><p>complete if every U-Cauchy net in X converges (or, equivalently, if every U-Cauchy filter in X converges). </p><p>,</p><p>d) is called complete if every Cauchy sequence in </p><p>X</p><p>converges. </p><p>,</p><p>X</p><p>converges and </p><p><strong>Remark 1.&nbsp;</strong>We can define the completeness of a subset&nbsp;of a pseudometric space (X d) by the condition that </p><p>Y</p><p>,</p><p>every Cauchy sequence in&nbsp;converges to some element of&nbsp;. A closed subset of a pseudometric space is complete </p><p></p><ul style="display: flex;"><li style="flex:1">Y</li><li style="flex:1">Y</li></ul><p>and a complete subset of a metric space is closed. A complete subset of a pseudometric space need not be closed. </p><p>Mathematics <strong>2020</strong>, 8, 1279 </p><p>4 of 19 </p><p>The following result holds in the metric case. </p><p><strong>Theorem 1.&nbsp;</strong>For a pseudometric space (X, d) the following conditions are equivalent. 1. The metric space X is complete. 2. Every Cauchy net in X is convergent. 3. Every Cauchy filter in (X, U<sub style="top: 0.1738em;">d</sub>) is convergent. </p><p>An important result in metric spaces is Cantor characterization of completeness. </p><p><strong>Theorem 2 </strong>(Cantor theorem) </p><p>sequence of nonempty closed subsets of </p><p>that for any family F<sub style="top: 0.1245em;">n</sub>, n ∈ N, of nonempty closed subsets of X </p><p><strong>.</strong></p><p>A pseudometric space (X </p><p>,</p><p>d) is complete if and only if every descending </p><p>X</p><p>with diameters tending to zero has nonempty intersection. This means </p><p>∞</p><p>\</p><p>F<sub style="top: 0.1548em;">1 </sub>⊇ F<sub style="top: 0.1453em;">2 </sub>⊇ . . .&nbsp;and lim diam(F<sub style="top: 0.1246em;">n</sub>) = 0 implies </p><p>F<sub style="top: 0.1246em;">n </sub>= ∅ . </p><p>n→∞ </p><p>n=1 </p><p>If d is a metric then this intersection contains exactly one point. </p><p>The diameter of a subset Y of a pseudometric space (X, d) is defined by </p><ul style="display: flex;"><li style="flex:1">diam(Y) = sup{d(x, y) : x, y ∈ Y} . </li><li style="flex:1">(2) </li></ul><p></p><p><strong>3. Quasi-Pseudometric and Quasi-Uniform Spaces </strong></p><p>In this section we present the basic results on quasi-metric and quasi-uniform spaces needed in </p><p>the sequel, using as basic source the book [2]. </p><p>3.1. Quasi-Pseudometric Spaces </p><p>Dropping the symmetry condition (M2) in the definition of a metric one obtains the notion of quasi-pseudometric, that is, a&nbsp;quasi-pseudometric on an arbitrary set </p><ul style="display: flex;"><li style="flex:1">satisfying the conditions (M1) and (M3).&nbsp;If </li><li style="flex:1">satisfies further (M4<sup style="top: -0.3013em;">0</sup>) then it called a quasi-metric. </li></ul><p>The pair (X d) is called a quasi-pseudometric space, respectively a quasi-metric space (In [ ] the </p><p>X</p><p>is a mapping d : X × X → R </p><p>d</p><p>,</p><p>2</p><p>term “quasi-semimetric” is used instead of “quasi-pseudometric”). Quasi-pseudometric spaces were </p><p>introduced by Wilson [11]. <br>¯</p><p></p><ul style="display: flex;"><li style="flex:1">is the quasi-pseudometric d(x </li><li style="flex:1">The conjugate of the quasi-pseudometric </li></ul><p></p><p>¯</p><p>d</p><p>,</p><p>X</p><p>y) = d(y </p><p>which is a metric if </p><p>,</p><p>x) </p><p>,</p><p>x</p><p>,</p><p>y ∈ X. </p><p>The mapping d<sup style="top: -0.3013em;">s</sup>(x </p><p>and only if d is a quasi-metric. </p><p>,</p><p>y) = max{d(x </p><p>,</p><p>y) </p><p>,</p><p>d(x </p><p></p><ul style="display: flex;"><li style="flex:1">,</li><li style="flex:1">y)}, </li></ul><p></p><p>x</p><p></p><ul style="display: flex;"><li style="flex:1">,</li><li style="flex:1">y ∈ X, is a pseudometric on </li></ul><p></p><p>If (X, d) is a quasi-pseudometric space, then for x ∈ X and r &gt; 0 we define the balls in X by (1) </p><p></p><ul style="display: flex;"><li style="flex:1">The topology <em>τ</em><sub style="top: 0.1738em;">d </sub>(or <em>τ</em>(d)) of a quasi-pseudometric space (X d) can be defined through the family </li><li style="flex:1">,</li></ul><p></p><p>V<sub style="top: 0.1738em;">d</sub>(x) of neighborhoods of an arbitrary point x ∈ X: <br>V ∈ V<sub style="top: 0.1738em;">d</sub>(x) ⇐⇒ ∃r &gt; 0 such that B<sub style="top: 0.1738em;">d</sub>(x, r) ⊆ V <br>⇐⇒ ∃r<sup style="top: -0.3428em;">0 </sup>&gt; 0 such that B<sub style="top: 0.1738em;">d</sub>[x, r<sup style="top: -0.3428em;">0</sup>] ⊆ V. </p><p>The topological notions corresponding to d will be prefixed by d- (e.g., d-closure, d-open, etc.). </p><p>The convergence of a sequence (x<sub style="top: 0.1246em;">n</sub>) to </p><p>x</p><p>with respect to <em>τ</em><sub style="top: 0.1737em;">d</sub>, called </p><p>d</p><p>-convergence and denoted by </p><p>d</p><p>x<sub style="top: 0.1245em;">n </sub>−→ x, can be characterized in the following way </p><p>d</p><p>x<sub style="top: 0.1245em;">n </sub>−→ x ⇐⇒ d(x, x<sub style="top: 0.1245em;">n</sub>) → 0. </p><p>(3) <br>Also </p><p>¯</p><p>d</p><p>¯</p><p>x<sub style="top: 0.1246em;">n </sub>−→ x ⇐⇒ d(x, x<sub style="top: 0.1246em;">n</sub>) → 0 ⇐⇒ d(x<sub style="top: 0.1246em;">n</sub>, x) → 0. </p><p>(4) </p><p>Mathematics <strong>2020</strong>, 8, 1279 </p><p>5 of 19 </p><p>As a space equipped with two topologies, <em>τ</em><sub style="top: 0.1738em;">d </sub>and <em>τ</em><sub style="top: 0.2507em;">d</sub><sub style="top: 0.0873em;">¯ </sub>, a quasi-pseudometric space can be viewed </p><p>as a bitopological space in the sense of Kelly [12]. </p><p>The following example of quasi-metric space is an important source of counterexamples in </p><p>topology (see [13]). </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Example 1 </strong>(The Sorgenfrey line) </li><li style="flex:1"><strong>.</strong></li></ul><p></p><p>For y) = 1 if x &gt; y. A basis of open <em>τ</em><sub style="top: 0.1737em;">d</sub>-open neighborhoods of a point x ∈ R is formed by the family </p><p>x + <em>ε</em>), 0 &lt; <em>ε </em>&lt; 1. The family of intervals (x − <em>ε</em>, x], 0 &lt; <em>ε </em>&lt; 1, forms a basis of open <em>τ</em><sub style="top: 0.2507em;">d</sub><sub style="top: 0.0873em;">¯ </sub>-open neighborhoods </p><p>. Obviously, the topologies <em>τ</em><sub style="top: 0.1738em;">d </sub>and <em>τ</em><sub style="top: 0.2507em;">d</sub><sub style="top: 0.0873em;">¯ </sub>are Hausdorff and d<sup style="top: -0.3013em;">s</sup>(x, y) = 1 for x = y, so that&nbsp;<em>τ</em>(d<sup style="top: -0.3013em;">s</sup>) is the discrete </p><p>x</p><p>,</p><p>y ∈ R define a quasi-metric </p><p>d</p><p>by d(x </p><p>,</p><p>y) = y − x, if x ≤ y </p><p>and d(x </p><p>,</p><p>[x </p><p>,</p><p>of </p><p>xtopology of R. </p><p><strong>Asymmetric normed spaces </strong></p><p>Let X be a real vector space. A mapping p : X → R is called an asymmetric seminorm on X if <br>(AN1) (AN2) (AN3) </p><p>p(x) &gt; 0; </p><p>p(<em>α</em>x) = <em>α</em>p(x); </p><p>p(x + y) 6 p(x) + p(y) , </p><p>for all x, y ∈ X and <em>α </em>&gt; 0. <br>If, further, </p><p>(AN4) </p><p>p(x) = p(−x) = 0 ⇒ x = 0 , </p><p>for all x ∈ X, then p is called an asymmetric norm. <br>To an asymmetric seminorm p one associates a quasi-pseudometric d<sub style="top: 0.1245em;">p </sub>given by </p><p>d<sub style="top: 0.1245em;">p</sub>(x, y) = p(y − x), x, y ∈ X, </p><p>which is a quasi-metric if </p><p>p</p><p>is an asymmetric norm.&nbsp;All the topological and metric notions in an asymmetric normed space are understood as those corresponding to this quasi-pseudometric d<sub style="top: 0.1245em;">p </sub></p><p>(see [2]). </p><p>The following asymmetric norm on </p><p>(see [2]). </p><p>R</p><p>is essential in the study of asymmetric normed spaces </p><p><strong>Example 2. </strong>On the field </p><p>R</p><p>of real numbers consider the asymmetric norm u(<em>α</em>) = <em>α</em><sup style="top: -0.3013em;">+ </sup>:= max{<em>α</em>, 0} </p><p>.</p><p>Then, for <em>α </em>∈ R, u¯(<em>α</em>) = <em>α</em><sup style="top: -0.3014em;">− </sup>:= max{−<em>α</em>, 0} and u<sup style="top: -0.3014em;">s</sup>(<em>α</em>) = |<em>α</em>|. The topology <em>τ</em>(u) generated by </p><p>u</p><p>is called </p><p>. A basis </p><p>the upper topology&nbsp;of </p><p>R</p><p>, while the topology <em>τ</em>(u¯) generated by u¯ is called the lower topology of </p><p>R</p><p>of open <em>τ</em>(u)-neighborhoods of a point <em>α </em>∈ R is formed of the intervals (−∞, <em>α </em>+ <em>ε</em>), <em>ε </em>&gt; 0. A basis of open </p><p><em>τ</em>(u¯)-neighborhoods is formed of the intervals (<em>α </em>− <em>ε</em>, ∞), <em>ε </em>&gt; 0. </p><p>In this space the addition is continuous from (R × R, <em>τ</em><sub style="top: 0.1246em;">u </sub>× <em>τ</em><sub style="top: 0.1246em;">u</sub>) to (R, <em>τ</em><sub style="top: 0.1246em;">u</sub>), but the multiplication is </p><p>discontinuous at every point (<em>α</em>, <em>β</em>) ∈ R × R. </p><p>The multiplication is continuous from (R<sub style="top: 0.1246em;">+ </sub></p><p>,</p><p>| · |) × (R, <em>τ</em><sub style="top: 0.1246em;">u</sub>) to (R, <em>τ</em><sub style="top: 0.1246em;">u</sub>) but discontinuous at every point </p><p>(<em>α </em></p><p>,</p><p><em>β</em>) ∈ (−∞, 0) × R to (R, <em>τ</em><sub style="top: 0.1245em;">u</sub>), when (−∞, 0 </p><p>)</p><p>is equipped with the topology generated by | · | and </p><p>R</p><p>with <em>τ</em><sub style="top: 0.1245em;">u</sub>. </p><p>The following topological properties are true for quasi-pseudometric spaces. </p><p><strong>Proposition 1 </strong>(see [2])<strong>. </strong>If (X, d) is a quasi-pseudometric space, then the following hold. </p><p>¯</p><p>1. The ball B<sub style="top: 0.1737em;">d</sub>(x, r) is d-open and the ball B<sub style="top: 0.1737em;">d</sub>[x, r] is d-closed. The ball B<sub style="top: 0.1737em;">d</sub>[x, r] need not be d-closed. 2. The topology d is T<sub style="top: 0.1453em;">0 </sub>if and only if d is a quasi-metric. <br>The topology d is T<sub style="top: 0.1548em;">1 </sub>if and only if d(x, y) &gt; 0 for all x = y in X. </p><p>Mathematics <strong>2020</strong>, 8, 1279 </p><p>6 of 19 </p><p>¯</p><p>3. For every fixed x ∈ X, the mapping d(x </p><p>,</p><p>·) : X → (R, | · |) is </p><p>dd</p><p>-upper semi-continuous and -lower semi-continuous and </p><p>d</p><p>-lower </p><p>semi-continuous. </p><p>¯</p><p>For every fixed y ∈ X, the mapping d(·, y) : X → (R, | · |) is </p><p>d</p><p>-upper </p><p>semi-continuous. </p><p>Recall that a topological space (X, <em>τ</em>) is called: </p><p>••</p><p>T<sub style="top: 0.1453em;">0 </sub>if, for every pair of distinct points in </p><p>the other; </p><p>T<sub style="top: 0.1548em;">1 </sub>if, for&nbsp;every pair of distinct points in </p><p>the other; </p><p>X</p><p>, at least one of them has a neighborhood not containing </p><p>, each of them has a neighborhood not containing </p><p>X</p><p>••</p><p>T<sub style="top: 0.1453em;">2 </sub>(or Hausdorff) if every two distinct points in X admit disjoint neighborhoods; </p><p>regular if, for every point x ∈ X and closed set </p><p>A</p><p>not containing x, there exist the disjoint open </p><p>sets U, V such that x ∈ U and A ⊆ V. </p><p><strong>Remark 2.&nbsp;</strong>It is known that the topology <em>τ</em><sub style="top: 0.1738em;">d </sub>of a pseudometric space (X </p><p>,</p><p></p><ul style="display: flex;"><li style="flex:1">d) is Hausdorff (or </li><li style="flex:1">T<sub style="top: 0.1453em;">2</sub>) if and only if </li></ul><p></p><p>dis a metric if and only if any sequence in X has at most one limit. </p><p>The characterization of Hausdorff property of quasi-pseudometric spaces can also be given in terms of </p><p>uniqueness of the limits of sequences, as in the metric case:&nbsp;the topology of a quasi-pseudometric space (X d) is </p><p>Hausdorff if and only if every sequence in&nbsp;has at most one&nbsp;-limit if and only if every sequence in&nbsp;has at </p><p>,</p><p></p><ul style="display: flex;"><li style="flex:1">X</li><li style="flex:1">d</li><li style="flex:1">X</li></ul><p></p><p>¯</p><p>most one d-limit (see [11]). </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us