
JOURNAL OF SCIENCE OF HNUE FIT., 2013, Vol. 58, pp. 179-188 This paper is available online at http://stdb.hnue.edu.vn USING A PROJECT-BASED LEARNING METHOD IN EACH ADVANCED DATA STRUCTURES – PRIORITY QUEUES Doan Thi Thu Huyen Faculty of Information Technology, Hanoi National University of Education Email: [email protected] Abstract. In this paper, we propose a new approach to teach advanced data structures - priority queues to junior and senior Information Technology (IT) students by applying the project-based learning method, a student-centered method which aims to create a learning environment in which students work individually to complete an open-ended project. To estimate how effectively project-based method works in IT education and show how the method works in a specific IT project, results are presented from a pedagogical experiment on group of 15 students studying IT at Hanoi University of Science and Technology. Based on the results of this experiment, the project proved that this new approach in teaching advanced data structures to IT students was effective. Keywords: Project-based learning, advanced data structures, priority queues. 1. Introduction Project-based learning (PBL) method, which consists of many ways to develop a curriculum, allows for an active and constructive way to develop a central didactic principle that integrates several skills and competences through real work tasks and processes [1]. PBL is synonymous with learning in depth. A well-designed project provokes students to encounter central concepts and principles of a discipline. The use of projects in the university comprises several tasks that are usually perceived as separate units: to do research and transfer projects, to teach project management and dedicated subjects, to educate students to carry out research and do practical work, and to achieve relevant results within student’s projects [1,4,3]. In computer science (CS) education and, more specifically, in the teaching of data structures and algorithms, doing with each project, learners are forced to either modify existing concepts or develop new ones. This helps them practice their abstract thinking and algorithm thinking through levels of abstraction in an algorithm concept. Jacob C. 179 Doan Thi Thu Huyen Perrenet [2] suggested that students study making use of 4 levels of abstraction: the execution level, the program level, the object level and the problem level. They must specify a problem precisely, analyze given problems, determine the basic actions that are adequate to the given problem, construct a correct algorithm to a given problem using the basic actions, think about all possible particulars and normal cases of a problem and to improve the efficiency of an algorithm. PBL has been used for multiple classrooms [9], groups [1,5] and individuals [10,11]. Universities and colleges in Vietnam have widely utilized PBL in many subjects. FPT Polytechnic designs a training program for each term include the PBL method, and a case-study for every subject. They provide flexible engagement models which ensure that the program will meet the diverse needs and requirements of society. The method is used at the Hanoi National University of Education, Hanoi University of Science and Technology (HUST) and others, with some practical subjects for senior students. For our priority queue major, one of the interested abstract data types today, PBL applied to individuals is a promising method since to become knowledgeable in this field demands a profound background and it is difficult to utilize conventional education method, when the presentation of programming and code are impossible. In addition, abstraction, the ability to perform abstract thinking and to exhibit abstraction skills, one of the fundamental principles of software engineering in order to master complexity, takes an important role in computer science education [11,12,13], especially in studying these data structures because the concept of queue only exists in real life, but computer. In CS curriculum, heap and binary heap, however, are only presented to approach priority queue data structures, whereas in many instances types of priority queue are used the most popular being that of Van Emde Boas, which is presented in many English materials and courses around the world [7,8]. We assume that some skills, including abstract thinking (especially at the object and the problem level), algorithm thinking, research skills and some soft-skills related to carrying out projects, can be best learned in authentic and student-centered projects by making the suitable pedagogical environment that includes giving students the chance to explore many questions based primarily on surmise - inspiring them to describe the way they deal with problems - and teaching broad concepts in preference to just facts. This paper describes a general curricular concept of PBL which can be applied to each student. In one example, the goals and objectives as well as the organization will be described. The focus of this paper is on the learning process for students carrying out projects. 180 Using project-based learning method to each advanced data structures... 2. Content 2.1. Project-based learning and design project example 2.1.1. Project-based learning method The first documented effort of PBL can be found in the engineering curriculum at the University of Aalborg (Denmark) in 1974. Features of PBL, its roles and effectiveness have been widely researched from many standpoints [3]. Basically, most approaches proposed that: PBL creates a "constructivist" learning environment in which students construct their own knowledge. They are taught about skills as well as content. These skills can be categorized as communication and presentation skills, organization and time management skills, research and inquiry skills, self-assessment and reflection skills, group participation and leadership skills. In addition, PBL allows students to reflect upon their own ideas and opinions, exercise voice and choice, and make decisions that affect project outcomes and the learning process in general. PBL offers a wide range of benefits to both students and teachers. A growing body of academic research supports the use of PBL in universities and colleges to engage students, cut absenteeism, boost cooperative learning skills and improve academic performance. In a project, students have some choices in deciding what they will work on, they plan their own project and participate in defining criteria and rubrics to assess their project and they solve problems they encounter while working on their project and make some sorts of final presentation of their project. Thus, students involved in projects take greater responsibility for their own learning than during more traditional classroom activities. Especially, with CS projects, they have opportunities to develop a different set of skills: project management, time management, organization, research procurement and debugging and complex skills, such as higher-order thinking, problem-solving, collaborating and communicating. In order to have a well-designed project, it’s important for lecturers to recognize situations that would make for good projects, to structure problems as learning opportunities, to collaborate with colleagues to develop interdisciplinary projects, to manage the learning process, to integrate technologies where appropriate and to develop authentic assessments[4]. In this method, the project is often divided into several steps and phases in a variety of approaches [1,5,14]. To generate a curriculum, we apply a method that divides the project design design into 7 major steps [5]. We utilize this direction to design a project about advanced data structure. Step 1. Preparation, getting involved: Students can get acquainted with the topic 181 Doan Thi Thu Huyen to be worked on in two ways: with the tools of the divergence and of the convergence. The introduction of the topic has to be from various angles. Participating in the project, students must know clearly the requirements their teachers have for them. Step 2. The examination of the topic: Information ought to be collected on the topic or problem in as many ways and from as many sources as possible. Step 3. The elaboration of the action plan: The distribution of the tasks to be accomplished, the schedule and the definition of the key events must be given. In this step, individual ideas can be developed, for original thoughts and unique solutions are welcome, but it is also the most time consuming step. Each step has to be accomplished within a certain deadline, and it must be done responsibly. Step 4. The fulfilmentof the action plan: The task assignment, the collection of ideas and the preparation are followed by the fulfilment of the action plan. If the students find joy and anticipation in their work, the project will be carried out developed appropriately. Step 5. Presentation: Students don’t present an accomplished work, but the results of their work. Step 6. Evaluation, review, feedback: Students must experience success during the project. We ought to appreciate originality, the precision of the execution, and the good decisions made. Step 7. Planning the future: This step is needed if there is to be continued work on the project or if we transmit the results to other persons or groups. Base on size, type and features of a specific project, lecturers should flexibly apply these steps flexibly. Some steps may be grouped into one to reduce and simplify the process.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages10 Page
-
File Size-