
TEI-821 .; · . l.l BRARY 0. S. Geological Survey Ground Waier Branch ll!!!!sx.4'Wa.PSI;I P H Y S I C A L P R 0 P E R T I E S 0 F E V A P 0 R I T E M I N E R A L S By E. C. Robertson UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY TEI-821 •. UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY PHYSICAL PROPERTIES OF EVAPORITE MINERALS* By Eugene C. Rqbertson June 1962 Report TEI-821 This report is preliminary and has not been edited for conformity with Geological Survey format and nomenclature. * Prepared on behalf of the U.S. Atomic Energy Commission -2- USGS - TEI-821 Distribution No. of co-.ties Division of Reactor Development (W. G. Belter) • • • • • • • • • • 15 Division of Research (D. R. Miller). • • • • • • • • • • • • • • • 1 Division of Raw Materials (R. D. Nininger) • • • • • • • • • • • • 1 Division of Peaceful Nuclear Explosives (R. Hamburger) • • • • • • 1 Hanford Operations Office (C. L. Robinson) • • • • • • • • • • • • 1 Grand Junction Operations Office • • • • • , • • • • • • • • • • • 1 Idaho Operations Office (John Horan) • , • • • • • • • • • • • • • 1 Oak Ridge Operations Office (H. M. Roth) , • • • , • • • • • • • • 1 Savannah River Operations Office (Karl Herde). • • • • • • • • 1 Division of Technical Information Extension, Oak Ridge • • • • • • 6 Nevada Operations Office • • • • • • • • • • • • • • • • • • • • • 2 Office of Operations Analysis & Planning, Washington • • • • • • • 1 U, S. Naval Radiological Defense Lab., San Francisco • • • • • • • 1 Health Physics Division, Oak Ridge National Laboratory (F. L. Parker) E. G. Struxness) • • • • • • • • • • • • • • • • 1 Chemistry Division? Argonne National Lab, (W, M, Manning), • • • • 1 Chemical Tech, Div., Oak Ridge National Lab. (W, E. Clark) • • • • 1 U,S, Bureau of Mines.? Bartlesville, Oklahoma (J. W. Watkins) • • • 1 Los Alamos Sci entific Laboratory (J. H. Hall) ••• , • • • • • • • 1 Los Alamos Scientific Laboratory (C. W. Christenson) • • • • • • • l Earth Sciences Division, NAS~NRC (Linn Hoover) •• , •• , • • • • 10 University of Texas~ Austin (E. F. Gloyna) • • • • • • • • • • • • 1 General Electric Company, Richland, Washington (E. R. Irish) • • • 2 University of California (W. J, Kaufman) • • • • • • • • • • • • • 1 E. I. DuPont de Nemours & Company (C. M, Patterson). • • • • • • • 1 Lawrence Radiation Laboratory, Technical Information Division (Clovis G, Craig) ••• , ••••••• , ••••• • • 1 Lawrence Radiation Laboratory, Livermore (Director). • • • • • • • 25 U, S. Geological Survey~ Geologic Division, ••• , •••••• , ••••• • • • • • • • • 95 Water Resources Division ••••••••• , ••• • • • • • • • • 45 220 -4- CONTENTS • Page Introduction • o o • o • • • • • o • • • • o • o • • • • • • • • • • • 7 1. Mineralogy, density, and general physical properties . 9 2. Thermodynamic properties • • • • • • • • • • • • •••• 21 3. Thermal properties • o • • • • o • • • • • • • • • 29 4. Elastic moduli and internal friction • • • • • • • • • • • • • • 33 5. Electrical and magnetic properties • • • • • • • • • • • • • • 43 6. Optical properties • o ••••••••••••••••••••• 49 7. Mechanical properties • • • • • • • • • ••••••• 58 8. High pressure effects on physical properties • • • • • • • • • 76 References cited •••••••••••••••••••• 85 TABLES .. Table 1.1 Theoretical chemica~ compositions of oceanic evaporite minerals (in weight percent) • • • • • • • • • • • • • • • 10 1.2 Typical bulk chemical compositions of halite beds in evaporite mineral deposits. • • • • • • • • • • • • • • • 12 1. 3 Minerals in shaly layers in evaporite deposits. • • • • • • • 13 1.4 Densities of evaporite minerals • • • • • • • • • • • • • • • 14 1. 5 Miscellaneous physical properties of evaporite minerals • • 18 1.6 Permeability of rock salt ••••••••••••••••• • • 20 2.1 Standard state (at 298.15° K) ~hermodynamic properties of some evaporite minera~s • • • • • • • • • • • • • • • 22 2.2 Thermodynamic data oLNaCl from 400° K to 1, 300° K • • • 23 2. 3 Thermodynamic data of KCl from 4oo• K to 1, 2 00° K • • 24 2.4 Thermodynamic data of Caso4 from 400° K to 1, 400° K. • • 25 2. 5 Thermodynamic data of Si02 from 400° K to 1, 900° K. • • • 26 2.6 Heat required to raise the temperature of rock salt to 1, 500° C and to 2, 000° C •••••••••••••••• • 28 3. 1 Thermal conductivity and diffusivity of NaCl at high temperatures •• -•••••••••••••••••• . 30 3. 2 Thermal conductivity of NaCl and KCl single crystal~ from 40° C to 100° C •••••••••••••••• . 31 3. 3 Thermal expansions of NaCl and KCl single crystals • . 32 4.1 Adiabatic elastic constants of NaCl and KCl from 1 to 10, 000 bars pressure at room temperature •••• . 34 -5- TABLES (Con't) Table ... 4.2 Temperature effect on dynamic elastic constants of NaCl single crystals ••• o •••• o o •••• o • • • • • 35 4o 3 Dynamic elastic moduli and ~ specific heat of KCl for the temperature range 25° to 760° C • • • • • • • • • • • 36 4o4 Internal friction of single crystals of NaCl from 2 0° K 1 to 2 2 oo K • • • • o • • o • • o o o o· o • o • • • • o • • • • 3 7 4. 5 Acoustic velocities and dynamic elastic moduli of rock salt in place o o o o o o o o • • • • • • • • • • • • • • . 38 4.6 Internal friction of single crystals of NaCl and KCl at high ultrasonic freq,uency, the effect of temperature, : - ~ and the calculated velocities and elastic constants o • o • 39 4. 7 Variation of internal friction according to dynamic strain of single crystal NaCl with prior compressive strain and with annealing temperature. • • • • • • • • • o o • • 41 4o8 Effect of friction reducer and gage type on static Young's '..,_ .,. Modulus for rock salt o • • o o o o o • o • • • • • • • • • 42 5ol Electrical resistivity as a function of temperature of NaCl and KCl single crystals • o • • o o • • • o • • . 44 5. 2 Electrical conductivity of NaCl near the melting point (804° C) • o o o o o o o o o o o • • • • • • • • • • • . 45 5, 3 Dielectric strength of NaCl and K;Cl single crystals as a function of temperature o o o o o •• o ••••••• . 46 5.4 Transient currents induced by cyclic loading of NaCl sing1 e cry s t_al so • o o o o o o o o o o • • • • • • • • • • • 4 7 5.5 Magnetic susceptibility of NaCl, KCl, and CaS04 • • • • • • 48 6.1 Spectral absorption of light by NaCl. • • • • • • • • o • • • • 50 6. • 2 Luminescence activation energies in NaCl and f(Cl as a function __g _Ltemperature •••••••••••••• r • • • 51 6o3 Temperafi.ii~e effect on the infrared reflection by NaCl single crystals. o • • • • • • • • • • • • • • o • • • • • • 52 6.4 Removal by annealing of density change in NaCl single crystals produced by proton irradiation • • • • • • • • • 53 6. 5 Gamma-ray coloration of plastically deformed NaCl single crystals. • o o • • . • • • • • • • • • • • • • • • • • 54 6.6 Effect of X-radiation on internal friction of NaCl single crystals. o • • • • • • • • • • • • • • • • • • • • • 55 6. 7 Linear expansion of NaCl and KCl single cryatals due to X-radiation. o • • • • • • • • • • • • • • • • • • • 56 6.8 Refractive indices of certain evaporite minerals. • • • • • • 57 -6- TABLES (Con't) Table 7.1 Translation and twin gliding of certain evaporite minerals .... o •• o o ••••••••••••• 59 7. 2 Stress-strain data f~r NaCl single crystals at varicnrs temperatures and pressures • o • • • • • • • • • • • • • • 60 7. 3 Stress-strain data for rock salt at room temperature under moderate confining pressure. • • • • • • • • • • • • 61 7. 4 Yield point and tensile strength of NaCl single crystals at room temperature and pressure from various sources • 62 7. 5 Temperature effect on tensile strength of NaCl single crystals ••••• o • • • • • • • • • • • • • • • • • • • • • 6 3 7. 6 Compressive strength of rock salt at room temperature and pressure • .. .. • • • • • • • • • • • • o • • • • • • • • 64 7. 7 Reproducibility of strain-time data on NaCl • • • • • • • • • • 6 5 7. 8 Strain-time data on NaCl as a function of confining pressure, temperature, and stress difference. • • • • • • 66 7. 9 Density decrease of NaCl with single stage compressive ~ loading and with cyclic compressive loading and unloading 6 7 7.10 Density and hardness changes in plastically deformed KCl single crystals •••••• ., • • • • • • • • • • • • • • • • 68 7.11 Quench hardening in single crystals of NaCl • • • • • • • • • • 89 7.12 Effects of radiation on the compressive strength of rock salt • ~3 7.13 Effect of radiation on creep of rock salt • • • • • • • • • • • • 75 8. 1 Molar volumes of NaCl at high pressures and high temperatures • ., • • • • • • • • • • • • • • • • • • • • • • 77 8.2 High pressure transition of KCl single crystal for temperature range 0° to 200° C •••••• • ••••••• , 79 8. 3 Effect of pressure on the melting points of NaCl and KCl • • • 80 8.4 Dynamic volume changes of rock salt under shock pressure, computed from shock and particle velocities by the Hugoniot equation of state. • • • • • • • • • • • • • • • • • 81 8. 5 Dynamic compressibility and electrical conductivity of sodium chloride at high pressures and temperatures • • • • • 82 8. 6 Compressibility of NaC1 and KCl single crystals at room temperature. • ••••••••••••••••••• . 83 8. 7 Volumetric compressibility of rock salt at room temperature •••••••••••••••••• . 84 -7- l PHYSICAL PROPERTIES OF EVAPORITE MINERALS by Eugene Co Robertson Introduction The data in the following tables were abstractep from measure­ ments of physical properties of evaporite minerals or of equivalent synthetic compounds. The compounds considered are the halide and sulfate salts which supposedly precipitated from evaporating ocean water and
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages90 Page
-
File Size-