Quick Reference to Sage

Quick Reference to Sage

Sage Quick Reference (Basic Math) find_root(f(x), a, b) find x ∈ [a, b] s.t. f(x) ≈ 0 options e.g. aspect ratio=[1, 1, 1] color=’red’ opacity Peter Jipsen, latest version at n sagemath.org/quickref X plot3d(f(x, y),[xb,xe],[yb,ye],options) f(i) = sum([f(i) for i in [k..n]]) GNU Free Document License, extend for your own use add option plot_points=[m, n] or use plot3d adaptive Aim: map standard math notation to Sage commands i=k n parametric plot3d((f(t),g(t),h(t)),[t ,t ],options) Y b e f(i) = prod([f(i) for i in [k..n]]) parametric plot3d((f(u, v),g(u, v),h(u, v)), i=k Notebook (and commandline) [ub,ue],[vb,ve],options) Evaluate cell: hshift-enteri Calculus use + to combine graphics objects comhtabi tries to complete command lim f(x) = limit(f(x), x=a) x→a Discrete math command?htabi shows documentation lim f(x) = limit(f(x), x=a, dir=’minus’) command??htabi shows source x→a− bxc = floor(x) dxe = ceil(x) lim f(x) = limit(f(x), x=a, dir=’plus’) a.htabi shows all methods for object a (more: dir(a)) x→a+ Remainder of n divided by k = n%k k|n iff n%k==0 string or regexp shows links to docs d n! = factorial(n) x = binomial(x,m) search_doc(’ ’) dx (f(x)) = diff(f(x),x) m search_src(’string or regexp’) shows links to source ∂ φ = golden_ratio φ(n) = euler phi(n) ∂x (f(x, y)) = diff(f(x,y),x) lprint() toggle LaTeX output mode diff = differentiate = derivative Strings: e.g. s = ’Hello’ = "Hello" = ""+"He"+’llo’ version() print version of Sage R f(x)dx = integral(f(x),x) s[0]=’H’ s[-1]=’o’ s[1:3]=’el’ s[3:]=’lo’ Insert cell: click on blue line between cells integral = integrate Lists: e.g. [1,’Hello’,x] = []+[1,’Hello’]+[x] Delete cell: delete content then backspace R b Tuples: e.g. (1,’Hello’,x) (immutable) a f(x)dx = integral(f(x),x,a,b) Taylor polynomial, deg n about a: taylor(f(x),x,a,n) Sets: e.g. {1, 2, 1, a} = Set([1,2,1,’a’]) (= {1, 2, a}) Numerical types List comprehension ≈ set builder notation, e.g. Integers: Z = ZZ e.g. -2 -1 0 1 10^100 2d graphics {f(x): x ∈ X, x > 0} = Set([f(x) for x in X if x>0]) Rationals: = QQ e.g. 1/2 1/1000 314/100 -42 Q line([(x1,y1),...,(xn,yn)],options) Decimals: R ≈ RR e.g. .5 0.001 3.14 -42. x y ... x y options Linear algebra polygon([( 1, 1), ,( n, n)], ) Complex: ≈ e.g. 1 C CC 1+i 2.5-3*i circle((x,y),r,options) = vector([1,2]) 2 text("txt",(x,y),options) Basic constants and functions 1 2 options as in plot.options, e.g. thickness=pixel, = matrix([[1,2],[3,4]]) Constants: π = pi e = e i = i ∞ = oo 3 4 rgbcolor=(r,g,b), hue=h where 0 ≤ r, b, g, h ≤ 1 Approximate: pi.n(digits=18) = 3.14159265358979324 1 2 use option figsize=[w,h] to adjust aspect ratio = det(matrix([[1,2],[3,4]])) Functions: sin cos tan sec csc cot sinh cosh tanh 3 4 plot(f(x),x ,x ,options) sech csch coth log ln exp min max Av = A*v A−1 = A^-1 At = A.transpose() √ parametric plot((f(t),g(t)),t ,t ,options) ab = a*b a = a/b ab = a^b x = sqrt(x) min max methods: nrows() ncols() nullity() rank() trace()... √ b polar plot(f(t),t ,t ,options) n x = x^(1/n) |x| = abs(x) log (x) = log(x,b) min max b combine graphs: circle((1,1),1)+line([(0,0),(2,2)]) Symbolic variables: e.g. t,u,v,y,z = var(’t u v y z’) Sage modules and packages animate(list of graphics objects, options).show(delay=20) Define function: e.g. f(x) = x2 f(x)=x^2 from module name import * (many preloaded) or f=lambda x: x^2 or def f(x): return x^2 e.g. calculus coding combinat crypto functions 3d graphics games geometry graphs groups logic matrix line3d([(x ,y ,z ),...,(x ,y ,z )],options) Operations on expressions 1 1 1 n n n numerical plot probability rings sets stats sphere((x,y,z),r,options) factor(...) expand(...) (...).simplify_... sage.module name.all.htabi shows exported commands tetrahedron((x,y,z),size,options) Symbolic equations: f(x)==g(x) Std packages: Maxima GP/PARI GAP Singular R Shell ... cube((x,y,z),size,options) _ is previous output Opt packages: Biopython Fricas(Axiom) Gnuplot Kash ... octahedron((x,y,z),size,options) _+a _-a _*a _/a manipulates equation %package name then use package command syntax dodecahedron((x,y,z),size,options) Solve f(x) = g(x): solve(f(x)==g(x),x) time command to show timing information icosahedron((x,y,z),size,options) solve([f(x,y)==0, g(x,y)==0], x,y) (Sage quick reference version 1.1) 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    1 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us