
<p></p><ul style="display: flex;"><li style="flex:1"><strong>ACCOUNT </strong></li><li style="flex:1"><strong>21 </strong></li></ul><p></p><p><strong>Application of Organic Azides for the Synthesis of Nitrogen-Containing Molecules </strong></p><p>Shunsuke Chiba* </p><p>Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore Fax +6567911961; E-mail: [email protected] </p><p><em>Received 31 May 2012 </em></p><p>Organic azides possess diverse chemical reactivities.<sup style="top: -0.31em;">4 </sup>Owing to their 1,3-dipole character, they undergo [3+2] cycloaddition with unsaturated bonds, such as those in alkynes and alkenes as well as carbonitriles (Scheme 1, part a).<sup style="top: -0.2999em;">5 </sup>Organic azides can also be regarded as nitrene equivalents (Scheme 1, part b).<sup style="top: -0.3em;">6 </sup>Accordingly, their reactions with nucleophilic anions, electrophilic cations, and radicals can formally provide the corresponding nitrogen anions, cations, and radicals, respectively, forming a new bond with the internal azido nitrogen and releasing molecular nitrogen. Moreover, the generation of anions, cations, and radicals at the a-position to the azido moiety can result in rapid denitrogenation to deliver the corresponding iminyl species, which can be used in further synthetic transformations (i.e., carbon–nitrogen bond formation). </p><p><strong>Abstract: </strong>In this account, recent advances made on the reactions of several types of organic azides, such as vinyl azides, cyclic 2-azido alcohols, a-azido carbonyl compounds, towards the synthesis of nitrogen-containing molecules are described. </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">Introduction </li></ul><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">Chemistry of Vinyl Azides </li></ul><p></p><ul style="display: flex;"><li style="flex:1">2.1 </li><li style="flex:1">Thermal [3+2]-Annulation of Vinyl Azides with 1,3-Dicar- </li></ul><p>bonyl Compounds <br>2.2 </p><p>2.3 2.4 <br>Manganese(III)-Catalyzed Formal [3+2]-Annulation with 1,3-Dicarbonyl Compounds Manganese(III)-Mediated/Catalyzed Formal [3+3]-Annulation with Cyclopropanols Synthesis of Isoquinolines from a-Aryl-Substituted Vinyl Azides and Internal Alkynes by Rhodium–Copper Bimetallic Cooperation <br>33.1 <br>Chemistry of Cyclic 2-Azido Alcohols Manganese(III)-Catalyzed Ring Expansion of 2-Azidocyclobutanols </p><p><strong>(a) 1,3-Dipoles </strong></p><p>N<br>R</p><p><strong>N</strong></p><p>N</p><p></p><ul style="display: flex;"><li style="flex:1">3.2 </li><li style="flex:1">Palladium(II)-Catalyzed Ring Expansion of Cyclic 2-Azido </li></ul><p>Alcohols </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>C</strong></li><li style="flex:1"><strong>C</strong></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">N</li><li style="flex:1">alkenes </li></ul><p>alkynes nitriles <br>RR</p><p><strong>NN</strong></p><p></p><ul style="display: flex;"><li style="flex:1">N</li><li style="flex:1">N</li></ul><p></p><p><strong>CCCCCN</strong></p><p>R</p><p><strong>N</strong></p><p><strong>C</strong></p><p>Ntriazolines </p><p>44.1 <br>Chemistry of a-Azido Carbonyl Compounds Orthogonal Synthesis of Isoindole and Isoquinoline Derivatives </p><p>+</p><p><strong>C</strong></p><p>Ntriazoles <br>R</p><p><strong>N</strong></p><p><strong>C</strong></p><p>N</p><p></p><ul style="display: flex;"><li style="flex:1"><strong>N</strong></li><li style="flex:1"><strong>N</strong></li></ul><p></p><p><strong>N</strong></p><p>tetrazoles </p><p></p><ul style="display: flex;"><li style="flex:1">4.2 </li><li style="flex:1">Generation of Iminylcopper Species and Their Catalytic </li></ul><p>Carbon–Carbon Bond Cleavage under an Oxygen Atmosphere </p><p><strong>(b) Nitrene equivalents </strong></p><p>+</p><p>N<sub style="top: 0.0985em;">2 </sub></p><p>R</p><p><strong>N</strong></p><p></p><ul style="display: flex;"><li style="flex:1">N</li><li style="flex:1">N</li><li style="flex:1">R</li></ul><p></p><p><strong>N</strong></p><p>4.3 5<br>Copper(II)-Catalyzed Aerobic Synthesis of Azaspirocyclohexadienones Conclusion </p><p>nitrenes </p><p><strong>with carbanions or other nucleophiles </strong></p><p>R</p><p><strong>N</strong></p><p></p><ul style="display: flex;"><li style="flex:1">N</li><li style="flex:1">N</li></ul><p></p><p><strong>X</strong><sup style="top: -0.1969em;">– </sup></p><p></p><ul style="display: flex;"><li style="flex:1">+</li><li style="flex:1">+</li></ul><p>+<br>RR</p><p><strong>N</strong></p><p><strong>XC</strong></p><p>N<sub style="top: 0.0985em;">2 </sub></p><p><strong>Key words: </strong>azides, nitrogen-containing heterocycles, radical reactions, redox reactions, oxygenations </p><p><strong>with carbocations </strong></p><p>R</p><p><strong>N</strong></p><p></p><ul style="display: flex;"><li style="flex:1">N</li><li style="flex:1">N</li></ul><p></p><p><strong>C</strong><sup style="top: -0.1969em;">+ </sup></p><p>+</p><p><strong>N</strong></p><p>N<sub style="top: 0.0984em;">2 </sub>N<sub style="top: 0.0985em;">2 </sub></p><p><strong>with carbon radicals </strong></p><p>+<br>R</p><p><strong>N</strong></p><p></p><ul style="display: flex;"><li style="flex:1">N</li><li style="flex:1">N</li></ul><p></p><p><strong>C</strong></p><p></p><ul style="display: flex;"><li style="flex:1">+</li><li style="flex:1">R</li></ul><p></p><p><strong>N</strong></p><p><strong>C</strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>1</strong></li><li style="flex:1"><strong>Introduction </strong></li></ul><p></p><p><strong>chemistry of </strong>α<strong>-azido anions, cations, and radicals </strong><br><strong>CCC</strong></p><p><strong>NNN</strong></p><p>NNNNNN<br>+++</p><p><strong>CCC</strong></p><p><strong>NNN</strong></p><p>N<sub style="top: 0.0984em;">2 </sub>N<sub style="top: 0.0985em;">2 </sub>N<sub style="top: 0.0985em;">2 </sub></p><p>The chemistry of organic azides commenced with the synthesis of phenyl azide by Griess in 1864<sup style="top: -0.31em;">1 </sup>and the discovery of the rearrangement of acyl compounds with hydrogen azide (HN<sub style="top: 0.1901em;">3</sub>) by Curtius in 1890.<sup style="top: -0.2999em;">2 </sup>Since 1950, various synthetic organic reactions have been developed using acyl, aryl, and alkyl azides, which have been extensively applied for the synthesis of nitrogen-containing azaheterocycles as well as peptides.<sup style="top: -0.2999em;">3 </sup></p><p><strong>Scheme 1 </strong></p><p>We have been interested in the intriguing chemical reactivity of organic azides, such as vinyl azides, cyclic 2-azido alcohols, and a-azido carbonyl compounds (Scheme 2). In this account, we describe recent advances made on the reactions of these organic azides towards the synthesis of nitrogen-containing molecules which have been developed in our research group. </p><p><strong>SYNLETT </strong>2012, 23, 21–44 </p><p></p><ul style="display: flex;"><li style="flex:1">x</li><li style="flex:1">x</li><li style="flex:1">.x </li><li style="flex:1">x</li><li style="flex:1">.2 </li><li style="flex:1">0</li><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p>Advanced online publication: 09.12.2011 DOI: 10.1055/s-0031-1290108; Art ID: A59911ST © Georg Thieme Verlag Stuttgart · New York </p><p><strong>22 </strong></p><p>S. Chiba </p><p><strong>ACCOUNT </strong></p><p>NN</p><p><strong>N</strong></p><p>inyl species serve for the formation of carbon–nitrogen bonds. In this section, we present the synthesis of azaheterocycles from vinyl azides via several types of reaction mode based on the above chemical reactivities. </p><p>NN</p><p><strong>N</strong></p><p>R</p><p><strong>N</strong></p><p>NN<br>HO <br>R' </p><p>R</p><p>O</p><p><strong>a-azido carbonyl compounds cyclic 2-azido alcohols vinyl azides </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>2.1 </strong></li><li style="flex:1"><strong>Thermal [3+2]-Annulation of Vinyl Azides </strong></li></ul><p><strong>with 1,3-Dicarbonyl Compounds </strong></p><p><strong>Scheme 2 </strong></p><p>During the course of our study on the chemistry of 2<em>H</em>- azirine derivatives,<sup style="top: -0.3em;">11 </sup>it was found that the reaction of azirine <strong>1 </strong>with acetylacetone (<strong>2</strong>) in 1,2-dichloroethane at room temperature gave tetrasubstituted pyrrole <strong>3 </strong>in quantitative yield after 33 hours (Scheme 4). </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>2</strong></li><li style="flex:1"><strong>Chemistry of Vinyl Azides </strong></li></ul><p></p><p>Intermolecular annulation reactions can allow for the straightforward and selective construction of complex cyclic molecular structures in a one-pot manner from relatively simple building blocks, one of the most ideal processes in organic synthesis from an atom-<sup style="top: -0.3099em;">7 </sup>and stepeconomical<sup style="top: -0.31em;">8 </sup>point of view. Inspired by this perspective, we have recently been interested in the application of vinyl azides as a three-atom unit including one nitrogen for various types of annulation reactions to prepare azaheterocycles. </p><p>EtO<sub style="top: 0.0984em;">2</sub>C Cl <br>COMe Me <br>Cl </p><ul style="display: flex;"><li style="flex:1">O</li><li style="flex:1">O</li><li style="flex:1">CO<sub style="top: 0.0984em;">2</sub>Et </li></ul><p></p><p>+</p><p><strong>N</strong></p><p>Cl </p><p><strong>1</strong></p><p><strong>N</strong></p><p></p><ul style="display: flex;"><li style="flex:1">Me </li><li style="flex:1">Me </li></ul><p>DCE r.t., 33 h </p><p>H</p><p>Cl </p><p><strong>2 </strong>(1.2 equiv) <br><strong>3 </strong>quant </p><p><strong>Scheme 4 </strong></p><p>While the reaction of azirine <strong>1 </strong>with acetylacetone (<strong>2</strong>) in tetrahydrofuran (THF) has been reported, the yield of pyrrole <strong>3 </strong>was low.<sup style="top: -0.3099em;">12 </sup>The generation of <strong>3 </strong>in high yield in the above reaction (Scheme 4) led us to further investigate the pyrrole formation. <br>One of the attractive chemical properties of vinyl azides is their ability to undergo thermal decomposition to give highly strained three-membered cyclic imines, 2<em>H</em>-azirines, via vinylnitrene intermediates following denitrogenation (Scheme 3, part a).<sup style="top: -0.2997em;">9 </sup>Moreover, the carbon–carbon double bond of vinyl azides can be used for the formation of new carbon–carbon bonds with appropriate organometallic compounds (R′–[M]) or radical species (R¢) which results in the generation of iminyl metals or iminyl radicals, respectively (Scheme 3, parts b and c).<sup style="top: -0.3098em;">10 </sup>These im- <br>The reaction may proceed through the addition of acetylacetone (<strong>2</strong>) to the imino carbon of azirine <strong>1</strong>,<sup style="top: -0.3099em;">13 </sup>followed by nucleophilic attack of the nitrogen in the resulting aziridine to a carbonyl group with concurrent ring opening of the strained three-membered ring.<sup style="top: -0.3099em;">14 </sup>However, the instability and poor accessibility of the 2<em>H</em>-azirines prevented us using this strategy as a synthetic method for pyrroles. Accordingly, we planned to use vinyl azides as precursors of 2<em>H</em>-azirines which can be easily synthesized<sup style="top: -0.2999em;">15 </sup>and handled (Scheme 5). </p><p>R<br>R<br>R</p><p>Δ</p><p><strong>N</strong></p><p>NN<br>(a) </p><p><strong>N</strong></p><p>– N<sub style="top: 0.0984em;">2 </sub></p><p><strong>N</strong></p><p>2H-azirines vinylnitrenes </p><p>R</p><p>R<br>R</p><p>As proposed in Scheme 5, simple heating of a mixture of ethyl 2-azido-3-(2,6-dichlorophenyl)acrylate (<strong>4</strong>) and acetylacetone (<strong>2</strong>) in toluene at 100 °C provided pyrrole <strong>5 </strong>in 86% yield (Table 1, entry 1).<sup style="top: -0.2998em;">16 </sup>Various 2-azido-substituted cinnamates possessing electron-donating and -withdrawing groups on the phenyl group (entries 2–8), as well as a derivative containing a pyridyl moiety (entry 9), reacted with acetylacetone (<strong>2</strong>) to give the corresponding 2- </p><p>R<br>R' <br>R' <br>R'–[M] <br>[M] </p><p><strong>N</strong></p><p>NN</p><p><strong>N</strong></p><p>NN<br>(b) (c) </p><p><strong>N</strong></p><p>[M] <br>– N<sub style="top: 0.0984em;">2 </sub><br>R<br>R' <br>R' <br>R</p><p><strong>N</strong></p><p>NN</p><p><strong>N</strong></p><p>NN<br>R' <br>– N<sub style="top: 0.0984em;">2 </sub></p><p><strong>N</strong></p><p><strong>Scheme 3 </strong></p><p><strong>Biographical Sketch </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Shunsuke Chiba </strong>was born University of Tokyo (work- Nanyang </li><li style="flex:1">Technological </li></ul><p>in Zushi, Kanagawa, Japan, ing under Professor Koichi University, Singapore, as an in 1978. He obtained his Narasaka). He was appoint- assistant professor. His reB.Eng. from Waseda Uni- ed as a research associate at search focus is methodology versity in 2001 and received the University of Tokyo in development in the area of his Ph.D. in 2006 from the 2005. In 2007, he moved to synthetic organic chemistry. </p><p><em>Synlett </em><strong>2012</strong>, <em>23</em>, 21–44 </p><p>© Thieme Stuttgart · New York </p><p><strong>ACCOUNT </strong></p><p>Applications of Organic Azides for the Synthesis of Nitrogen-Containing Molecules </p><p><strong>23 </strong></p><p>indoles via intramolecular C–H amination.<sup style="top: -0.3099em;">17,18 </sup>It is noteworthy that the above intermolecular reactions of 2-azidosubstituted cinnamate derivatives with acetylacetone (<strong>2</strong>) gave pyrroles exclusively without any indole formation. </p><p></p><ul style="display: flex;"><li style="flex:1">R<sup style="top: -0.1969em;">2 </sup></li><li style="flex:1">R<sup style="top: -0.1969em;">2 </sup></li></ul><p></p><p>R<sup style="top: -0.1969em;">1 </sup></p><p>COMe Me </p><p>R<sup style="top: -0.1969em;">1 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">O</li><li style="flex:1">O</li></ul><p></p><p>Δ</p><p>– N<sub style="top: 0.0984em;">2 </sub>– H<sub style="top: 0.0984em;">2</sub>O <br>+</p><p><strong>N</strong></p><p></p><ul style="display: flex;"><li style="flex:1">Me </li><li style="flex:1">Me </li></ul><p></p><p><strong>N</strong></p><p>N<sub style="top: 0.0984em;">2 </sub></p><p>H</p><p><strong>2</strong></p><p>– N<sub style="top: 0.0984em;">2 </sub><br>– H<sub style="top: 0.0984em;">2</sub>O </p><p>As b-substituents (R<sup style="top: -0.3099em;">1</sup>) of azidoacrylates, ethoxycarbonyl and alkyl groups could be introduced, giving the corresponding pyrroles in good yields (entries 12 and 13). Simple azidoacrylate <strong>30 </strong>also reacted smoothly (entry 14). Using a-aryl-substituted vinyl azides, not only phenyl groups, but also naphthyl, indolyl, pyrrolyl, and benzothiophenyl moieties could be installed at the 3-position of the resulting trisubstituted pyrroles (entries 15–26). aAlkyl-substituted vinyl azide <strong>56 </strong>reacted smoothly to give the corresponding pyrrole <strong>57 </strong>in 82% yield (entry 27). An <em>E</em>,<em>Z</em>-mixture of 2-phenylvinyl azide (<strong>58</strong>) could also be used to prepare trisubstituted pyrrole <strong>59 </strong>in 85% yield (entry 28). Tetrasubstituted pyrroles <strong>61 </strong>and <strong>63 </strong>were success- </p><p>R<sup style="top: -0.1969em;">2 </sup></p><p>Me </p><p></p><ul style="display: flex;"><li style="flex:1">R<sup style="top: -0.1969em;">2 </sup></li><li style="flex:1">R<sup style="top: -0.1969em;">2 </sup></li></ul><p>R<sup style="top: -0.1969em;">1 </sup></p><p>COMe </p><p></p><ul style="display: flex;"><li style="flex:1">R<sup style="top: -0.1969em;">1 </sup></li><li style="flex:1">R<sup style="top: -0.1969em;">1 </sup></li></ul><p></p><p>H<strong>N </strong></p><p></p><ul style="display: flex;"><li style="flex:1">O</li><li style="flex:1">Me </li></ul><p></p><p><strong>N</strong></p><p>O<br>Me </p><p>OH <br>HO<br>H O </p><p><strong>N</strong></p><p>Me </p><p>H</p><p>Me </p><p><strong>B</strong><br><strong>A</strong></p><p><strong>Scheme 5 </strong></p><p>arylpyrroles in good yields. Vinyl azides <strong>22 </strong>and <strong>24 </strong>bearing acetyl and (dimethylamino)carbonyl moieties instead of an a-ethoxycarbonyl group could be employed to give the corresponding pyrroles <strong>23 </strong>and <strong>25 </strong>(entries 10 and 11, respectively). It is known that the thermolysis of 2-azidosubstituted cinnamates and their derivatives delivers 1<em>H</em>- </p><p><strong>Table 1 </strong>Synthesis of Pyrroles from Vinyl Azides and Acetylacetone (<strong>2</strong>)<sup style="top: -0.25em;">a </sup></p><p></p><ul style="display: flex;"><li style="flex:1">R<sup style="top: -0.1969em;">2 </sup></li><li style="flex:1">R<sup style="top: -0.1969em;">2 </sup></li></ul><p></p><p>R<sup style="top: -0.1969em;">1 </sup></p><p>COMe Me </p><p>R<sup style="top: -0.1969em;">1 </sup></p><p>Δ</p><p></p><ul style="display: flex;"><li style="flex:1">O</li><li style="flex:1">O</li></ul><p>+</p><p><strong>N</strong></p><p>– N<sub style="top: 0.0984em;">2 </sub>– H<sub style="top: 0.0984em;">2</sub>O </p><ul style="display: flex;"><li style="flex:1">Me </li><li style="flex:1">Me </li></ul><p></p><p><strong>N</strong></p><p>N<sub style="top: 0.0984em;">2 </sub></p><p>H</p><p><strong>2</strong></p><p></p><ul style="display: flex;"><li style="flex:1">Entry </li><li style="flex:1">Vinyl azides </li><li style="flex:1">Pyrroles<sup style="top: -0.1969em;">b </sup></li></ul><p>Entry </p><p>24 <br>Pyrroles<sup style="top: -0.1969em;">b </sup><br>O<br>Vinyl azides </p><p>: R = 2,6-Cl </p><p><strong>5 </strong>86% <strong>7 </strong>93% <strong>9 </strong>90% <strong>11 </strong>89% <strong>13 </strong>96% <strong>15 </strong>90% <strong>17 </strong>90% <strong>19 </strong>81% <br><strong>4</strong></p><p>1234567</p><p>8<sup style="top: -0.1966em;">c </sup></p><p>2</p><p><strong>6</strong>: R = H <strong>8</strong>: R = 4-Me <strong>10</strong>: R = 2-Me <strong>12</strong>: R = 3-NO<sub style="top: 0.0984em;">2 </sub><strong>14</strong>: R = 4-Br <strong>16</strong>: R = 4-CN <strong>18</strong>: R = 4-MeO </p><p></p><ul style="display: flex;"><li style="flex:1">EtO<sub style="top: 0.0984em;">2</sub>C </li><li style="flex:1">COMe </li></ul><p>Me <br>TsN </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>51 </strong>92% </li><li style="flex:1"><strong>50 </strong></li></ul><p></p><p>Me Me </p><ul style="display: flex;"><li style="flex:1">CO<sub style="top: 0.0984em;">2</sub>Et </li><li style="flex:1">N</li></ul><p>Ts <br>R</p><p>N<sub style="top: 0.0984em;">3 </sub><br>N<sub style="top: 0.0984em;">3 </sub></p><p>NH<br>N</p><ul style="display: flex;"><li style="flex:1">H</li><li style="flex:1">R</li></ul><p>O</p><p>O</p><p>EtO<sub style="top: 0.0985em;">2</sub>C </p><p>COMe Me <br>TsN <br>Me </p><p>Me </p><p><strong>52 54 </strong><br><strong>53 </strong>92% </p><p>25 26 <br>NTs <br>CO<sub style="top: 0.0984em;">2</sub>Et </p><p>9</p><p></p><ul style="display: flex;"><li style="flex:1"><strong>20 </strong></li><li style="flex:1"><strong>21 </strong>94% </li></ul><p></p><p>NH</p><p>N<sub style="top: 0.0984em;">3 </sub></p><p>NH</p><p>N<sub style="top: 0.0984em;">3 </sub></p><p>N</p><p>N<br>S</p><p>R<sup style="top: -0.1968em;">2 </sup></p><p>COMe Me </p><p>R<sup style="top: -0.1969em;">2 </sup></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>22</strong>: R<sup style="top: -0.1969em;">2 </sup>= COMe </li><li style="flex:1"><strong>23 </strong>74% </li></ul><p><strong>25 </strong>quant </p><p>10<sup style="top: -0.1969em;">d </sup>11 <br>Me Me </p><p>N<sub style="top: 0.0984em;">3 </sub></p><p><strong>24</strong>: R<sup style="top: -0.1969em;">2 </sup>= CONMe<sub style="top: 0.0984em;">2 </sub></p><p><strong>55 </strong>96% </p><p>S<br>NH<br>NH</p><p>N<sub style="top: 0.0984em;">3 </sub></p><p>EtO<sub style="top: 0.0984em;">2</sub>C </p><p>R<sup style="top: -0.1969em;">1 </sup></p><p>COMe Me </p><p><strong>26</strong>: R<sup style="top: -0.1969em;">1 </sup>= CO<sub style="top: 0.0984em;">2</sub>Et </p><p><strong>28</strong>: R<sup style="top: -0.1969em;">1 </sup>= CH<sub style="top: 0.0984em;">2</sub>Ph <strong>30</strong>: R<sup style="top: -0.1969em;">1 </sup>= H </p><p><strong>27 </strong>82% <strong>29 </strong>96% <strong>31 </strong>85% </p><p></p><ul style="display: flex;"><li style="flex:1">12 </li><li style="flex:1">CO<sub style="top: 0.0984em;">2</sub>Et </li></ul><p></p><p>N<sub style="top: 0.0984em;">3 </sub><br>R<sup style="top: -0.1969em;">1 </sup></p><p>O<br>13<sup style="top: -0.1969em;">e </sup></p><p>14 <br>Ph <br>Me </p><p>Me <br>Ph <br>N</p><p><strong>56 </strong></p><p>27 </p><p><strong>57 </strong>82% </p><p>H</p><p>N<sub style="top: 0.0984em;">3 </sub></p><p><strong>32: </strong>R = H </p><p><strong>33 </strong>75% <strong>35 </strong>98% <strong>37 </strong>95% <strong>39 </strong>86% <strong>41 </strong>92% <strong>43 </strong>91% <strong>45 </strong>86% </p><p></p><ul style="display: flex;"><li style="flex:1">N</li><li style="flex:1">15 </li></ul><p>16 17 18 19 20 21 <br>R<br>H</p><p><strong>34</strong>: R = 4-Me <strong>36: </strong>R = 4-OMe <strong>38: </strong>R = 2-OMe <strong>40: </strong>R = 4-Br <strong>42: </strong>R = 3-Br <strong>44: </strong>R = 4-CO<sub style="top: 0.0982em;">2</sub>Me </p><p>COMe Me <br>R<br>COMe </p><p>Me </p><p>N<sub style="top: 0.0984em;">3 </sub></p><p>N</p><p></p><ul style="display: flex;"><li style="flex:1"><strong>58 </strong></li><li style="flex:1"><strong>59 </strong>85% </li></ul><p><strong>61 </strong>66% <strong>63 </strong>91% </p><p>28 29 30 <br>N<br>H</p><p>N<sub style="top: 0.0984em;">3 </sub></p><p>(E:Z = 1:1) <br>H</p><p>O<br>Me </p><p>Me <br>COMe Me </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>47 </strong>94% </li><li style="flex:1"><strong>46 </strong></li></ul><p><strong>48 </strong></p><p>22 23 </p><p><strong>60 62 </strong></p><p>N</p><p>N<sub style="top: 0.0984em;">3 </sub><br>N<sub style="top: 0.0984em;">3 </sub></p><p>H<br>NH</p><p>O<br>Me </p><p>COMe </p><p>Me <br>Me Me </p><p><strong>49 </strong>65% </p><p></p><ul style="display: flex;"><li style="flex:1">N<sub style="top: 0.0984em;">3 </sub></li><li style="flex:1">N<sub style="top: 0.0984em;">3 </sub></li></ul><p></p><p>Me <br>N<br>N</p><p></p><ul style="display: flex;"><li style="flex:1">H</li><li style="flex:1">H</li></ul><p></p><p><sup style="top: -0.26em;">a </sup>Unless otherwise noted, the reactions were carried out by heating a mixture of the vinyl azide (0.3–0.5 mmol) and acetylacetone (<strong>2</strong>) (1.2 equiv) in toluene at 100 °C for 2–24 h. <sup style="top: -0.26em;">b </sup>Isolated yields are shown. <sup style="top: -0.26em;">c </sup>The reaction was performed at 85 °C for 16 h. <sup style="top: -0.25em;">d </sup>The reaction was performed at 85 °C for 20 h in the presence of acetylacetone (<strong>2</strong>) (2 equiv). <sup style="top: -0.26em;">e </sup>The reaction was performed at reflux for 5 h. </p><p>© Thieme Stuttgart · New York </p><p><em>Synlett </em><strong>2012</strong>, <em>23</em>, 21–44 </p><p><strong>24 </strong></p><p>S. Chiba </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages24 Page
-
File Size-