Presentation

Presentation

Violent Universe Explored by Japanese X-ray Satellites Hideyo Kunieda Nagoya University Asia Academic Seminar CPS 8th International School of Planetary Science September 30, 2011 at Awaji Lecture Plan September 30, 9:00-10:15 I. Basic processes in High energy astronomy I-1: Why X-ray astronomy? I-2: Emission mechanisms I-3: Energy sources II. High energy phenomena II-1: Stellar X-ray emission September 30, 10:45-12:00 II-2: Supernova remnants (SNR) II-3: Neutron stars and blackholes II-4: Active Galactic Nuclei II-5: Cluster of galaxies and Cosmology I-1. Why X-ray astronomy? 1. Sun http://swc.nict.go.jp/sunspot/ Optical Image Photosphere : Black body radiation T = 6430°K λpeak〜4500 A Wien’s law λT = 2800 micron K Density 〜1014 atom/cc (10-6 g/cc) http://swc.nict.go.jp/sunspot/ X-ray Image by Yohkoh Corona : Thin thermal emission + lines 6 T = 10 °Kλpeak 〜30 A (if BB) Density 〜106-8 atom/cc http://hinode.nao.ac.jp/latest/ http://hinode.nao.ac.jp/latest/ I-1. Why X-ray astronomy? Optical Image 2. Cluster of Galaxies Optical image : Component galaxies Emission from stars Visible mass ~ M X-ray image : Hot plasma T ~ 107-8°K Virgo X-ray Image by Plasma mass ~ 1-5 M Cluster ASCA Mass to bind hot gas in clusters Dark matter Mass ~ 5-20 M Radiation and related physical processes Radio λ= 0.1 - 100 mm FM Radio frequency Molecular emission 80.7 MHz λ=3x1010cm/8.07x107 Vibration, rotation = 4 x102 cm Infrared λ= 1-100 micron Dust emission Black body radiation 37℃ => 310 °K Low temp. stars ~ 9 micron Optical λ=4000-7000Å H Ly-α 1215Å Main sequence stars Ly limit 912Å T= 6430°K λpeak~4500 A H Ba-α (H-α) 6562Å Absorption & emission lines from excited atoms Radiation and related physical processes Ultra-violet λ= 100-4000Å Binding energy Early type stars(<7000°K) (Outer most electron) H (13.6 eV), He (24.6 eV), Emission lines Li (5.4eV), Be(9.3eV) X-rays λ= 1-100 Å Plasma temp. 105-8 K Binding energy (Inner most electron) Emission lines C(280eV), O(550eV) (transition between levels) Ar(3.1keV), Fe(7.1keV) Gamma rays λ< 1Å Nuclear transition Synchrotron rad. High energy particles Compton rad. Radiation mechanisms of X-rays Magnetic Field Sun, Stars High energy Nuclear Electrons Fusion Supernovae Energy Neutron stars Source X-rays X-rays Gravity Blackholes Light Hot Plasama Cluster galaxies Electrons Ion Optical UV X-ray X-rays IR Radio 100K 10,000 1M 100M Life cycle of stars Molecular Cloud Rado & Infrared Black Observations holes Birth of X-rays Stars Planetary nebula Supernova Sun explosion Visible stars Red giant Narrow window X-rays are observable at Visible light from out side atmosphere UV X-ray IR Visible γ-ray Radio Altitude for 1/100 of Io(km)of 1/100 for Altitude Wavelength X-ray Telescope Japanese X-ray Satellites Hakucho (1979) Tenma (1983) Ginga (1987) 90kg 200kg 420kg Suzaku (2005) 1700kg ASCA (1993) 420kg JAXA II-2: Emission mechanisms 1. Black body radiation Thermometry of steel furnaces based on the radiation E() d = 2 Z()kT d Z(): lattice points in phase space (1) Long wave side:Rayleigh-Jeans distribution 4πL3 Z(d = ----------- 2 d C3 E() d 8πkT U() d = ----------- = ----------------- 2 d L3 C3 When ν --> small, it well represents observed spectra but when ν is large, U will become infinity. II-2: Emission mechanisms 1. Black body radiation (2) Short Wave side:Wien distribution 4πL3 Z(d = ---------- 2 exp(-h /kT)d C3 2 Z(hd 8πh U() d = ------------------ = ----------- 3 exp(-h /kT) d L3 c3 When h /kT >>1, it well represents observed spectra but does not match with the data when h /kT <<1 II-2: Emission mechanisms 1. Black body radiation (3) Interpolation:Planck distribution 8πh 1 U() = -------- -------------------- 3 d Planck distribution c3 exp(h /kT) –1 When h /kT <<1, exp(- h /kT) =1 + h /kT 8πkT U() d = ---------- 2 d Rayleigh-Jeans c3 When h /kT >>1, exp(h /kT) >>1 8πkT U() d = ---------- 3 exp(-h /kT) d Wein c3 II-2: Emission mechanisms 1. Black body radiation Planck distribution ) ν Wien∝ R-J exp(-h /kT) Log B( 2 John D. Kraus, 1986: logν Radio Astronomy, Cygnus-Quasar Books ,81 II-2: Emission mechanisms 1. Black body radiation Peak frequency : derivative of Planck’s eq. = 0 8πh 1 U() = -------- -------------------- 3 d Planck distribution c3 exp(h /kT) –1 x3 f (x) = ---------- when x= h/kT x e –1 f 3x2(ex – 1) –x3ex ------ = ----------------------- = 0 x (ex –1)2 3(1- ex) = x left term = 0(x=0), =1.8(x=1), =2.4(x=2), =3(x=∞) x=2 .812 hmax=2.82 kT λmaxT = 2900(m・K) Wien’s law II-2: Emission mechanisms 1. Black body radiation Total brightness : Integration of Planck’s eq. U() c B() = --------------- 4π 2πh 1 ∫ B()d = --------- ∫ ----------------------- 3 d c2 exp(h /kT) – 1 When x= h/kT 2h kT x3 π4 B = ------- (------)4 ∫ --------- dx = ------- c2 h ex –1 15 2π5k4 = -------------- T4 = σ T4 15c2h3 σ= 5.67 x 10-5 erg cm-2 deg-4 s-1 :Stefan-Boltzmann constant II-2: Emission mechanisms 1. Black body radiation Planck distribution λ maxT=2900(m ・ K) Wien’s law ) ν Wien∝ R-J exp(-h /kT) Log B( 2 4 B =σ T John D. Kraus, 1986: logν Radio Astronomy, Cygnus-Quasar Books ,81 II-2: Emission mechanisms 2. Line emission and absorption Emission from Fe atoms 0 k eV ER C = E C - E K 0 .0 5 k eV M > 7 . 1 1 k e V ( <1 . 7 4 3 Å ) 0 .7 1 k eV L E = E - E Kβ Kβ M K = 7. 06 ke V ( 1. 75 7 Å) Kα K X- r a y s EK α = EL - EK = 6. 40 ke V ( 1. 93 7 Å ) 7 .1 1 k eV K-shell Characteristic X-rays Analysis of elements II-2: Emission mechanisms 2. Line emission and absorption Absorption by Fe atom Absorption edge E = E - E 0 k eV R C C K 0 .0 5 k eV M > 7 .1 1 k eV (< 1 .7 4 3 Å ) 0 .7 1 k eV L E K β = E - E K β M K = 7 .0 6 k eV ( 1 .7 5 7 Å ) K α E K α = E L - E K = 6 .4 0 k eV ( 1 .9 3 7 Å ) 7 .1 1 k eV K-shell Absorption lines If outer electrons are ionized II-2: Emission mechanisms 2. Line emission and absorption Absorption by Fe atom Absorption edge E > EK = 7.11 keV (1.743 Å) EK β = EM - EK ∝E-3 = 7. 06 ke V ( 1. 75 7 Å) EK α = EL - EK = 6. 40 ke V ( 1. 93 7 Å ) Absorption lines Absorption cross section If outer electrons are ionized EK X-ray energy II-2: Emission mechanisms Emission from hot plasmas Ionization state Electron collision/Photo ionization Free electrons Recombination Equilibrium Lines from ionized ions Binding energy increases after the removal of outer electrons Fe XVII(16 electrons are removed) Fe Kα X-ray 〜6.4 keV Fe XVIII -XXV 〜6.7 keV Fe XXVI 〜6.9 keV Line energy ---> Ionization state Line ratio of an element ---> Tion, Te (Balance of ionization/recomb.) Line ratio ----> Atomic abundance II-2: Emission mechanisms Emission from hot plasmas Galactic Center Suzaku: 180 ksec Fe abs. Edge FeI FeXXV FeXXVI Neutral Fe @6.4 keV He like Fe @6.7 keV H like Fe @6.9 keV Resolved by Koyama et al, 2007: Publ. Astron. Soc. Japan, 59, 221 ΔE~140 eV of CCD Koyama et al, 2007: Publ. Astron. Soc. Japan, 59, 245 II-2: Emission mechanisms Emission from hot plasmas 0 XIS -0.2 -0.4 0 -0.2 -0.4 Koyama, 2006: Journal of Physics ; Conference Series, 54, 95 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 II-2: Emission mechanisms 3. Bremsstrahlung .. n Dipole d Radiation into the unit solid angle Ω d2 .. θ dP d2 ----- = ---------- sin2 dΩ 4πc3 dW e2 . ----- = ------------ ∫ dn(t) x (n(t) x (t)))2 2 dt 16π 0c . If is the angle between (t)and n, 2 e . 2 = ------------ ∫ dsin (t)) - 2 16π 0c Max. at perpendicular direction 2 e . 2 2 = ----------- (v(t)) ∫ dsin (t)) 2 16π 0c v/c II-2: Emission mechanisms 3. Bremsstrahlung When d = sin d d dW e2 . ----- = -----------(v(t))2 3 dt 6π0c dW e2 v2 (t) sin ----- = ------------ ∫ d 2 5 dt 16π 0c (1-v(t) cos /c ) When β= v/c 1 Isotropic in the rest frame Lorentz transformation Beaming 1 γ= ---------------- √(1 – v2/c2) II-2: Emission mechanisms 3. Bremsstrahlung Lorentz transformation 1 x’=γ(x-vt) x=γ(x’+vt) γ= ---------------- √(1 – v2/c2) y’=y y=y’ z’=z z=z’ 2 t’=γ(t-vx/c ) t=γ(t’+vx’/c2) γ(dx’+vdt’) u ’+v u =dx/dt= --------------------- = ------------------------x x 2 2 γ(dt’+vdx/c ) 1 + vux’/c u ’ u =-----------------------y v (x, y, z) y 2 γ(1+vux’/c ) uz’ uz=-----------------------2 γ(1+vux’/c ) II-2: Emission mechanisms 3. Bremsstrahlung Measured in the moving system 1 Velocity u’, direction θ’, γ= ---------------- √(1 – v2/c2) Parallel component to v is affected by the motion v u||’+v u ’ u || = ---------------------2 u = ------------------------2 1 + vu||’/c γ( 1 + vu||’ /c ) In the moving system, light direction is θ‘ is changed to θ sin θ= -----u = ---------------------------- c sinθ’ c c γ( 1 + v cosθ /c) z z’ Here, u’=c, u|| =c cosθ, u =c sinθ If θ=π/2, sinθ=1/γ u u’ θ’ v 1/γ II-2: Emission mechanisms 3.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    52 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us