Quantum Magnetism - Neutrons in the Quasi-Particle Zoo

Quantum Magnetism - Neutrons in the Quasi-Particle Zoo

Quantum Magnetism - Neutrons in the Quasi-particle Zoo Henrik Moodysson Rønnow Laboratory for Quantum Magnetism (LQM), EPFL, Switzerland Niels Bohr Institute, University of Copenhagen, Denmark Henrik M. Ronnow – HERCULES 2015 Slide 1 Outline • Quantum Magnetism – Arena for many-body physics and highly correlated materials – Models-Materials-Measurements • Neutron scattering – Basics, uniqueness, and a bright future – The quasi-particle zoo • Selected examples – Multi-spinons in one-dimensional chains – Spin-wave anomaly and quest for pairing in 2D Henrik M. Ronnow – HERCULES 2015 Slide 2 Complexity of many-body systems CuO S=1/2 • Structure of a protein Ground state of a magnet 2 H = J Si Sj 1 spin: trivial 2 spins: singlet state |↑↓ - |↓↑ 4 spins: back-of-the-envelope calc. 16 spins:10 seconds on computer (4GB) 40 spins: World record:1’099’511’627’776 coefficients needed to describe a state Classical: 3N Quantum: 2N 1023 spins: 1D: analytic solution (Bethe 1931) • Pop2p-subunit Jonstrup et al (2007) 2D: antiferromagnet (Néel 1932) or • Mega-Dalton: fluctuating singlets? (Anderson 1973,1987) ~1’000’000 atoms (5 colors?) 23 ~3’000’000 numbers needed 10 ±some electrons:High-Tc superconductivity to describe the structure – THE enigma of modern solid state physics Henrik M. Ronnow – HERCULES 2015 Slide 3 Spin – the drosophila of quantum physics Spin: an atomic scale magnetic moment • Quantization: S=0, 1/2, 1, 3/2,…..∞ +1/2 S = 1/2 - 1/2 • Superposition: |ψ = |↑ + |↓ likelihood of up: ρ(↑) = |↑|ψ|2 = 2 • Quantum fluctuations average moment Sz = 0 imagine that spins fluctuate in ‘imaginary time’ • Quantum correlations e.g. two spins ‘entangled’ |ψ = ( |↑↓ - |↓↑ ) /√2 this is why 2N, not N Henrik M. Ronnow – HERCULES 2015 Slide 4 Quantum Magnetism – an arena for quantum phenomena 1) Model and Materials 3) Experimental tools: Spin, interactions Bulk probes The dimension Neutron scattering frustration Phenomena: Order, phase transitions, quantum fluctuations, collective excitations, 2) Theoretical methods of many body physics entanglement … analytic approximations numerical simulations Henrik M. Ronnow – HERCULES 2015 Slide 5 Magnetic measurements CuGeO Hsat (d6-5CAP)2CuCl4 3 2DHAF CuGeO3 (Hpip)2CuBr4 SR etc. Specific Specific heat SR etc. μ Magnetization Susceptibility Magnetization NMR, Henrik M. Ronnow – HERCULES 2015 Slide 6 A unique tool: Neutron scattering scattering and conservation rules Conservation rules: Sample Neutron Momentum ħQ = ħki – ħkf 2 2 Energy ħω = Ei – Ef = ħ(ki – kf )/2mn Spin S = σi – σf We can control and measure these quantities ! Henrik M. Ronnow – HERCULES 2015 Slide 7 Large scale instruments and facilities Ch. Ruegg, PSI Ch. Ruegg, Sample Source CuSO4·5D2O ILL - France MAPS 16m2 detector bank Henrik M. Ronnow – HERCULES 2015 Slide 8 Neutron scattering – an intense future • 1st generation facilities: European Spallation Source (ESS) – General purpose research reactors - All eyes are on Lund – congratulations ! nd • 2 generation facilities: Switzerland will contribute 3-4% – Dedicated to neutron scattering: CH-DK collaboration on 5 instrument – ILL, France, FRM2 Munich, SINQ CH, ISIS, UK etc. design workpackages 2 4 • 3rd generation facilities: CAMEA: 10 -10 over current instr. – SNS, US 1.4b$, commission 2006 – J-Parc, Japan 150b¥, commission 2008 – ESS, Sweden 1.4b€, start 2013, commission 2019 – China Spallation, start 2011*, commission 2018 • 2nd to 3rd generation gains of 10-1000 times ! – Faster experiments, smaller samples, better data – Time resolved physics, new fields of science – New instrument concepts SNS Henrik M. Ronnow – HERCULESJ-Parc 2015 ESS Slide 9 Neutron scattering cross-section – the power of simplicity From initial state i to final state f of neutron k and sample λ Neutrons treated as plane waves: Fourier transform in - space/momentum Energy conservation integral rep.: - time/energy Henrik M. Ronnow – HERCULES 2015 Slide 10 Magnetic neutron scattering Dipole interaction – electron spin and orbit moment spin-spin magnetic pre factor dipole factor Fourier transform cross-section form factor correlation function Henrik M. Ronnow – HERCULES 2015 Slide 11 Dynamic structure factor Spin-spin correlation function Dynamic structure factor Theory ! Fluctuation dissipation theorem gen. susceptibility intrinsic dynamics response to perturbation Henrik M. Ronnow – HERCULES 2015 Slide 12 Structure factors – time and energy • Dynamic structure factor: inelastic Elastic ) w Inelastic Quasi-elastic Q, – periodic: sin(ω0t) peak: δ(ω0-ω) S( decay: exp(-t/) Lorentzian: 1/(1+ω22) • Static structure factor: elastic Energy Transfer – Bragg peaks at ω = 0 • Instantaneous structure factor - integrate over energy – Finite time/length scale of correlations Henrik M. Ronnow – HERCULES 2015 Slide 13 Remark: instantaneous correlations Width Correlation length ξ Softening Damping v Z s c Γ = vs / ξ vs → Correlations and fluctuations on the 2D ξ square lattice Heisenberg antiferromagnet: Life-time J. Mag. Mag. Mat. 236, 4 (2001) PRL 82, 3152 (1999); 87, 037202 (2001) τ = ξ / vs =1/ G Henrik M. Ronnow – HERCULES 2015 Slide 14 Inelastic magnetic scattering: Lets take the scenic route… Between long range ordered states Selected examples – the zoo : • Spin-flip, singlet-triplet, dispersive triplets • 1D spin chain – spinons vs spin waves • 2D HAF zone boundary anomaly – as instability of spin waves ? – the smoking gun of RVB ? Aim: • Show the many types of quasiparticles • Show quantitativeness of neutron scattering … and spin liquids Henrik M. Ronnow – HERCULES 2015 Slide 15 paramagnetic spins S=1/2 Spin-flip excitation 5 T • Two states |↑, |↓, can be magnetized 1 • Zeemann-split energy of the levels gμBH=0.7 meV • A gap for transitions 0 E 1 |↓> 3 T gμBH gμBH=0.4 meV H Energy Energy [meV] 0 |↑> 0.8 1 T • Local excitation gμ H=0.13 meV no Q-dependence 0 B 0 Q π Henrik M. Ronnow – HERCULES 2015 Slide 16 Take two – the spin pair H = J Si Sj J No magnetization or Antiferromagnetic: J > 0 susceptibility up to critical field |↑↑, |↓↓, |↑↓ + |↓↑ E |1,1> E = 3/4J Stot=1 J triplets |1,0 > |0,0 >H -1/4J S =0 singlet |1,-1 tot Hc1 > |↑↓ - |↓↑ z z Singlet ground state: S 1 = S 2 = 0 Henrik M. Ronnow – HERCULES 2015 Slide 17 Singlet-Triplet excitations E Structure factor along pairs: S(q) ~ cos(d||·q) + cos(d ·q) |1,1> |1,0 > et al. |0,0 >H |1,-1 Demmel H > 2 c1 ) 3 , HMR, HMR, , Cu(BO 2 Ba Rüegg E = 3/4J Stot=1 triplets et al. singlet HMR HMR , 2 ) 3 Rüegg (BO 2 SrCu Zayed, Henrik M. Ronnow – HERCULES 2015 Slide 18 The spin-ladder – array of spin pairs k Perturbation from isolated rungs: Jr J l Ground state ≈ product of singlets E Excited states are triplets t±(r), t0(r) 2Jl ≈Jr-Jl Leg coupling Jl makes triplets move k 1/2 Create Bloch-waves of triplets t(k) 0 T < H < Hc1= ∆ spin liquid phase Dispersion Ek = Jr+Jl cos kd Jl Jr Real ground state has singlet fluctuations Jl – renormalisation of above result Henrik M. Ronnow – HERCULES 2015 Slide 19 1- and 2-triplet dispersion in Sr14Cu24O41 Different structure- triplet E=150 meV E=240 meV factor perp to ladder Braden, Regnault, Eccleston, Bewley Eccleston, Regnault, Braden, Henrik M. Ronnow – HERCULES 2015 Slide 20 Spin ladders • Sr14Cu24O41: Cuprate ladders, 1- and 2-triplons Neutrons Resonant Inelastic X-ray Scattering RIXS Henrik M. Ronnow – HERCULES 2015 Slide 21 Dynamics Luttinger-Liquid E m Ladder → Chain mapping 1 |1,1> ~ J /J >> 1 ~ band- 1 ( ) r l width ½ 2 | H Heff 1,0> H | H 0,0> H c1 c2 F. Mila, Eur. Phys. J. B 6 (1998) |1,-1> Jl Jr Jl Hc1 < H < Hc2 : Luttinger liquid no 3D long-range order Search Ch Ruegg et al. unique 1D dynamics for refs on beautiful ladder expts Henrik M. Ronnow – HERCULES 2015 Slide 22 Quasi-particle zoo in one-dimension Electronic states of matter: Metal / Semiconductor / Insulator Single particle picture Superconductors: Cooper-pairs, Majorana fermions Correlated electron states fractional Quantum Hall effect: fractional charges Magnetic states and excitations: Magnetic order semiclassical spin-wave magnon excitations single particle picture Quantum ‘disordered’ states (quantum spin liquids) Multi-magnon excitations collective quantum states Fractionalized excitations Possibly simplest example: 1D Heisenberg chain Analytic solution by Bethe in 1931: ‘domain wall quantum soup’ Henrik M. Ronnow – HERCULES 2015 Slide 23 Ferromagnets are simple (classical) z z + - - + H=-∑rr’Jrr’Sr·Sr’ = -J ∑<r,r’=r+d> S rS r’+ ½(S rS r’+S rS r’) nearest neighbour 2 Ordered ground state, all spin up: H|g> = Eg|g>, Eg=-zNS J -½ - - + Single spin flip not eigenstate: |r> = (2S) S r|g>, S rS r’|r> = 2S|r’> 2 H|r>=(-zNS J+2zSJ)|r> - 2SJ∑d |r+d> flipped spin moves to neighbors -½ ikr Periodic linear combination: |k> = N Σre |r> plane wave ikd Is eigenstate: H|k> = Eg+Ek|k>, Ek=SJΣd1-e dispersion = 2SJ (1-cos(kd)) in 1D iHt iE t Time evolution: |k(t)> = e |k> = e k |k> sliding wave Dispersion: relation between time- and space- modulation period Same result in classical calculation precession: Henrik M. Ronnow – HERCULES 2015 Slide 24 Ferromagnetic model is simple: Solution: Spin waves sharp dispersion Picture: easy cartoon https://www.ill.eu/?id=11644 Henrik M. Ronnow – HERCULES 2015 Slide 25 Spin waves in a “ferromagnet” CuSO45D2O dispersion = 2SJ (1-cos(kd)) Actually it is an antiferromagnet polarized by 5T field Henrik M. Ronnow – HERCULES 2015 Slide 26 Antiferromagnets are tricky Fluctuations stronger for fewer neighbours 1D: Ground state ‘quantum disordered’ spin liquid of S=1/2 spinons. Bethe ansatz ‘solves’ the model 2D: Ground state ordered at T=0 <S> = 60% of 1/2 (although not rigorously proven). 3D: Ground state long range ordered, weak quantum-effects Henrik M. Ronnow – HERCULES 2015 Slide 27 antiferromagnetic spin chain = 0 Ferro <<S2 Classical AF ~ S2 Quantum AF Ground state (Bethe 1931) – a soup of domain walls Henrik M.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    58 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us