Polymorphism in Bi-Based Perovskite Oxides: a First-Principles Study

Polymorphism in Bi-Based Perovskite Oxides: a First-Principles Study

Polymorphism in Bi-based Perovskite Oxides: a First-principles Study Oswaldo Diéguez Department of Materials Science and Engineering, Tel Aviv University, Email: [email protected] Web: http://www.eng.tau.ac.il/~dieguez Abstract Under normal conditions, bulk crystals of BiScO3, BiCrO3, BiMnO3, BiFeO3, and BiCoO3 present three very different variations of the perovskite structure: an antipolar phase, a rhombohedral phase with a large polarization along the space diagonal of the pseudocubic unit cell, and a supertetragonal phase with even larger polarization. With the aim of understanding the causes for this variety, we have used a genetic algorithm to search for minima in the surface energy of these materials. Our results show that the number of these minima is very large when compared to that of typical ferroelectric perovskites like BaTiO3 and PbTiO3, and that a fine energy balance between them results in the large structural differences seen. As byproducts of our search we have identified charge-ordering structures with low energy in BiMnO3, and several phases with energies that are similar to that of the ground state of BiCrO3. We have also found that a inverse supertetragonal phase exists in bulk, likely to be favored in films epitaxially grown at large values of tensile misfit strain. Short Biography Dr. Oswaldo Dieguez received his PhD from University of Santiago de Compostela, Spain. After postdoctoral stays at Cambridge, Rutgers, and MIT he joined the Institute of Materials Science of Barcelona as a staff researcher. He moved to the Department of Materials Science and Engineering of Tel Aviv University in 2013, where he is a senior lecturer (assistant professor). His research involves studying the properties of materials by modelling the behavior of their electrons and nuclei with the help of computers, mainly using density-functional theory. Most of his recent work is in the field of ferroelectrics and multiferroics, both in the development of new methodology and in its application to these materials of technological interest. .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    1 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us