
The quackery virus: An overview of pseudoscientific 7 health messages on Twitter George Claassen Introduction Quackery, the spread of pseudoscience and alternative ‘facts’ in the health field, has become a growing concern and challenge not only to scientists but also to journalists and the community at large. Trying to counter and refute misleading, harmful and often fraudulent health messages and marketing in the age of social media has been the source of various studies as well as intensive scrutiny of specifically the phenomenon of Twitter as a medium through which these messages are spread (Anderson et al., 2010; Bik & Goldstein, 2013; Birch, 2011; Colditz et al., 2018; Joubert & Costas, 2019; Mudde, 2019; Nagy et al., 2018; Steinman, 2018; Su et al., 2017; Van Rooyen, 2017). Furthermore, the public understanding of science is vital in any society, not only to counter fake news and pseudoscientific claims and quackery, but also to assist in finding ways to bring sound and trustworthy scientific findings to the attention of uninformed and often ignorant citizens bombarded by social media (Bauer, 2000; British Royal Society, 1995, 2007; Bucchi, 2004; Claassen, 2011; Gastrow, 2015; Hartz & Chappell, 1997; Hesmondhalgh, 2008; Joubert, 2018; Joubert & Guenther, 2017; Mooney & Kirshenbaum, 2009; Nelkin, 1995; Shukla & Bauer, 150 7 PSEUDOSCIENTIFIC HEALTH MESSAGES ON TWITTER 2007; Steinman, 2014; Webster, 2006). Bauer (2008: 119) states that this brings new emphasis to the reasons why science should be important to society and the public, as it is ‘important for making informed consumer choices’. Applied to the health field where quackery and pseudoscience can cause serious harm, this becomes even more imperative. Yet the way the media are used by consumers, have changed drastically over the past decade, as Bell points out (2016: n.p.): Our news ecosystem has changed more dramatically in the past five years than perhaps at any time in the past five hundred [...] Social media hasn’t just swallowed journalism, it has swallowed everything’ (emphasis added). This overview analyses how social media, and specifically Twitter, is a social media environment and platform where false health claims and quackery often spread virally and become part of what Habermas (1991: 30) describes as the public sphere, now vastly expanded from his ‘coffee houses, […] salons and […] table societies’ to the highly active viral environment of false health messages propagated on social media and specifically, for the purposes on this study, Twitter. Identifying quackery and pseudoscience, what Pigliucci calls ‘nonsense on stilts’ (2010), and distinguishing it from valid evidence-based science, has become one of the most important science communication challenges over the past decade, but it also is an endeavour in morality. When people and specifically celebrities who are followed by millions on social media platforms by an often gullible public, make false claims on health, it becomes not only imperative that scientists and informed journalists counter their non-evidence-based claims (Franzen et al., 2007; Hall, 2014), but it also becomes a moral issue (Claassen, 2019a; Pigliucci, 2010; Pigliucci & Boudry, 2013). Quoting the 19th century British scientist Thomas Henry Huxley on the moral duty of everyone in society to make a distinction between science and non-science, Pigliucci (2010: 1) touches upon an often-neglected 151 SCIENCE COMMUNICATION IN SOUTH AFRICA reason why science communication is so important in society: The foundation of morality is to […] give up pretending to believe that for which there is no evidence, and repeating unintelligible propositions about this beyond the possibilities of knowledge. Pigliucci (2010: 1) goes further, emphasising how the dangers inherent in accepting pseudoscience and quackery can harm, and that to accept ‘pseudoscientific untruths or conversely rejecting scientific truths, has consequences for us all, psychological, financial, and in terms of quality of life. Indeed […] pseudosci- ence can literally kill people’. Pigliucci and Boudry (2013) warn about the difficulty of distinguishing science from pseudoscience or non-science, and of demarcating the fields clearly, one of the reasons quackery can spread so quickly like a virus on Twitter. This results in a public that cannot make a clear distinction between evidence-based science, and quackery and fraudulent pseudoscientific claims. Bucchi (1998: 17) calls this distinction a ‘demarcation between orthodoxy (science) and deviance (non-science)’. Pigliucci and Boudry question the demarcation problem and Laudan’s (1983) premise about its demise and that it does not exist. Quacks and pseudoscientists are ‘master mimics’ at dressing their pseudo- scientific claims in a scientific cloak, fooling and confusing the public, and it remains an ever-growing challenge for lay people to make sense of the validity of claims (Claassen, 2019a: 202–203; Pigliucci & Boudry, 2013). Bronner (2011: 2) refers to a paradox between the ‘coexistence of progress in human knowledge with the persistence of certain ideas that are either false or questionable’ as conspiracy theories about the moon landings, the terrorist attacks of 11 September 2001 and, in the health field, homoeopathy and other pseudosci- entific practices illustrate (Gray, 2019). Ruse (2013) analyses the Gaia Hypothesis and why it was so strongly rejected by scientists, mostly evolutionary biologists, but widely accepted by members of the public, also on Twitter, as 152 7 PSEUDOSCIENTIFIC HEALTH MESSAGES ON TWITTER another ‘illustration of the intermixed world – although most of the time because of a lack of knowledge about the scientif- ic methods and evidence-based science among the public – of science and pseudoscience’ (as cited by Claassen, 2019a: 203). The health risk caused by the way news is reported is also emphasised by Nelkin (1995: 47), and science and specifically health-related journalism are often criticised for ‘inaccurate or misleading’ reporting (Dentzer, 2009: 1). This danger is seriously enlarged by false health claims made on Twitter. How to counter this? Studies have shown that it is indeed beneficial for scientists and scientific institutions to have an online social media presence (Bik & Goldstein, 2013; Joubert, 2018; Joubert & Costas, 2019; Mudde, 2019; Van Rooyen, 2017), that Twitter can foster better public engagement with science (Jarreau, 2016), and that communicating science on Twitter ‘works partly by relaying science to a more diverse audience’ (Novak, 2015). They have also shown that social media users are often interme- diaries making visible and assessing evidence of social impact (Pulido et al., 2018). As one study points out, ‘Scientists are increasingly using Twitter as a tool for communicating science. Twitter can promote scholarly discussion, disseminate research rapidly, and extend and diversify the scope of audiences reached. However, scientists also caution that if Twitter does not accurately convey science due to the inherent brevity of this media, misinformation could cascade quickly through social media’ (Bombaci et al., 2016: 216). The presence of scientists on Twitter and their role in making science news more quickly available and more accessible is leading to serious and often vigorous debate in the scientific community, especially after the publication of the ‘Kardashian Index’ (or K-Index) by Hall (2014). He defines the K-Index as a ‘measure of discrepancy between a scientist’s social media profile and publication record based on the direct comparison of numbers of citations and Twitter followers’ (Hall, 2014: 1). Hall (2014: 1) goes further, emphasising that in ‘the age of social media there are people who have high-profile scientific blogs or 153 SCIENCE COMMUNICATION IN SOUTH AFRICA twitter feeds but have not actually published many peer-reviewed papers of significance; in essence, scientists who are seen as leaders in their field simply because of their notoriety’. Yet Twitter brings an important advantage to scientists and science in general to announce their or other scientists’ studies and findings, breaking down the pay-wall problem for the general public of accessibility of scientific research by posting a link to the peer-reviewed article. This also assists journalists following Twitter to have quick and easy access to peer-reviewed studies which were before the age of social media often hidden behind expensive pay-walls. Twitter as choice by scientists in science communication Twitter is a special case with regard to science communication utilised by scientists themselves, as pointed out by various studies (Allgaier et al., 2013; Collins et al., 2016; Joubert, 2018; Vraga & Bode, 2017; Yeo et al., 2014), and as emphasised by Joubert and Costas (2019: 2): Twitter, a microblogging platform and social networking tool, has emerged as a particularly popular and powerful science communication platform that researchers (or scholars) embrace more readily than other social media platforms, possibly because it is viewed as more professional and more suitable for science communication than other tools such as Facebook. There is reason for this popularity of scientists utilising social media and specifically Twitter to discuss and announce scientif- ic developments. Traditional ‘news publishers have lost control over distribution of news […] Now the news is filtered through algorithms and platforms which are opaque and unpredictable’, as Bell points out (2016).
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages20 Page
-
File Size-