US007695834B1 (12) United States Patent (10) Patent No.: US 7,695,834 B1 BOrole (45) Date of Patent: Apr. 13, 2010 (54) MICROBIAL FUEL CELL WITH IMPROVED Lovley, D. R. “Microbial fuel cells; novel microbial physiologies ANODE and engineering approaches'. Current Opinions in Biotechnology, 2006, vol. 17,327-332. (75) Inventor: Abhijeet P. Borole, Knoxville, TN (US) Min, B. et al., “Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate microbial Fuel (73) Assignee. UT-Battelle, LLC, Knoxville, TN (US) Cell”. Environmental Science & Technology, 2004, vol. 38, No. 21. 5809-5814. (*) Notice: Subject to any disclaimer, the term of this Liu, J. L. et al., “Influence of anode pretreatment on its microbial patent is extended or adjusted under 35 colonization”, Journal of Applied Microbiology, 2007, vol. 102. U.S.C. 154(b) by 0 days. 177-183 Zang, T. et al... “Improved performances of E. coli-catalyzed micro (21) Appl. No.: 12/252,015 bial fuel cells with composite graphite/PTFE anodes'. Electrochem istry Communications, 2007, vol. 9, 349-353. (22) Filed: Oct. 15, 2008 (Continued) (51) Int. Cl. Primary Examiner Patrick Ryan HOLM 4/90 (2006.01) Assistant Examiner—Brent Thomas (52) U.S. Cl. ............................. 429/2; 429/43: 502/101; (74) Attorney, Agent, or Firm Scully, Scott, Murphy & 427/115 Presser, P.C. (58) Field of Classification Search ...................... 429/2 See application file for complete search history. (57) ABSTRACT (56) References Cited U.S. PATENT DOCUMENTS The present invention relates to a method for preparing a 4,652,501 A * 3/1987 Bennetto et al. ............... 429.2 microbial fuel cell, wherein the method includes: (i) inocu 6,554,977 B2 * 4/2003 Hu et al. ..................... 204/253 lating an anodic liquid medium in contact with an anode of the 2006/0147763 A1 7/2006 Angenent et al. microbial fuel cell with one or more types of microorganisms 2006/0234110 A1* 10/2006 Bergel ........................, 429.43 capable of functioning by an exoelectrogenic mechanism; (ii) 2007, OO12620 A1 1/2007 Murphy establishing a biofilm of the microorganisms on and/or within 2007/0048577 A1 3/2007 Ringeisen et al. the anode along with a substantial absence of planktonic 2007/0134520 A1* 6/2007 Shimomura et al. ............ 429.2 forms of the microorganisms by Substantial removal of the 2007/0259216 A1 11/2007 Logan planktonic microorganisms during forced flow and recircula 2007/02592.17 A1 11/2007 Logan tion conditions of the anodic liquid medium; and (iii) Subject 2008/0182308 A1* 7/2008 Donaldson et al. .......... 435,160 ing the microorganisms of the biofilm to a growth stage by 2008/02929 12 A1* 11/2008 Logan et al. ................... 429.2 incorporating one or more carbon-containing nutritive com OTHER PUBLICATIONS pounds in the anodic liquid medium during biofilm formation or after biofilm formation on the anode has been established. Logan, B.E. at al., “Microbial Fuel Cells: Methodology and Technol ogy”. Environmental Science & Technology, 2006, vol. 40, No. 17. 5181-51.92. 53 Claims, 7 Drawing Sheets Nitrogen Diffusive airs air cathode US 7,695,834 B1 Page 2 OTHER PUBLICATIONS Kim, J. R. et al., “Power Generation Using Different Cation, Anion and Ultrafiltration Membranes in Microbial Fuel Cells'. Environ Freguia, S. et al., “Electron and Carbon Balances in Microbial Fuel mental Science & Technology, 2007, vol. 41 No. 3, 1004-1009. Cells Reveal Temporary Bacterial Storage Behavior During Electric ZU0, Y. et al., “Isolation of the Exoelectrogenic Bacterium ity Generation”. Environmental Science & Technology, 2007, vol. Ochrobactrum anthropi YZ-1 by Using a U-Tube Microbial Fuel 41, 2915-2921. Cell”. Applied and Environmental Microbiology, 2008, vol. 74 No. Logan, B.E. et al., “Electricity-producing bacterial communities in 10,3130-3137. microbial fuel cells'. Trends in Microbiology, 2006, vol. 14 No. 12, Cheng, S. et al., “Sustainable and efficient biohydrogen via 512-518. electrohydrogenesis”, PNAS, 2007, vol. 104 No. 47, 18871-18873. Schubert C., “Citrus of slime', Nature, 2006, vol. 441, 277-279. Rabaey, K. et al., “Microbial ecology meets electrochemistry: elec Gorby Y.A. et al., “Electrically conductive bacterial nanowires pro tricity-driven and driving communities”. The ISME Journal, 2007. duced by Shewanella Oneidensis strain MR-1 and other microorgan vol. 1, 9-18. isms’. Proc. Natl. Acad. Sci. USA, 2006, vol. 103 No. 30, 11358 Rittmann, B.E. et al., “Understanding the Biofilm Anode in MFCs' 11363. Arizona State University Biodesign Institute, Center for Environ Mohan, S. V. et al., “influence of anodic biofilm growth on mental Biotechnology, Microbial Fuel Cells First International Sym bioelectricity production in single chambered mediatorless microbial posium, May 27-29, 2008; also available at http://www. fuel cell using mixed anaerobic consortia Biosensors and microbial fuelcell.org/Presentations/First%20MFC%20symposium/ Bioelectronics, 2008, vol. 24, 41-47. Rittmann'620-%20for%20posting/pdf. Min, B. et al., “Electricity generation using membrane and saltbridge microbial fuel cells', Water Research, 2005, vol.39, 1675-1686. * cited by examiner U.S. Patent Apr. 13, 2010 Sheet 1 of 7 US 7,695,834 B1 Nitrogen FIGURE 1A FIGURE 1B U.S. Patent Apr. 13, 2010 Sheet 2 of 7 US 7,695,834 B1 U.S. Patent Apr. 13, 2010 Sheet 3 of 7 US 7.695,834 B1 0 Current, mA a Open circuit Voltage Change load to 100 ohms 09 2 - - - 0.8 - E - 0.7 g. e 5 --------------- "a 3. ----- - rt O 6 H Stop carbon Change load g s source addition to 250 ohms - 0.5 3 I- T Resume carbon -A- O.4 g w Source addition - 0.3 g. 0.5 {} e ...--00 -re O.2 O Starting load = 500 ohms (up to day 119) O. O O O 20 AO 60 80 OO 20 40 160 -------- Y-...-- Y------ -------- Mode Mode Model Time, days FIGURE 2 U.S. Patent Apr. 13, 2010 Sheet 4 of 7 US 7,695,834 B1 FIGURE 3 U.S. Patent Apr. 13, 2010 Sheet 5 of 7 US 7.695,834 B1 5% 0% MEA (day 13) 1% MFCA (day 126) 8% 3% 28% orieuse. | wa--- 0.2%. MFCA (day 136) 3% %2% 3% M FC-B (day 162. 2% --------- 7% Actinobacteria Actinomyces S. Bacteroidetes Betaproteobacteria Burkhoideriales C. Betaproteobacteria Rhodocyclates Azospira Betaproteobacteria Rodocyclales other Betaproteobacteria other Deltaproteobacteria Desulfowibrio Detaproteobacteria Pelobacter Firmicutes Weiloneliaceae Anaeroarcus Firrticutes Weilonellaceae Anaeronusa Firfrticutes Clostridiales Gammaproteobacteria Synergistetes Synergistes kroy FIGURE 4 U.S. Patent Apr. 13, 2010 Sheet 6 of 7 US 7.695,834 B1 D.O.FO2.g34,FOg S. Uncated tacted in ticile 1 C228581 (e.733028aluaticiasetia certiftunity, Newport Hartxur, R. giF-12C2 3Uncuttled Azosplasp, MFQ-EB4 (AJ630274; electricity-generating MFG Azospira oryzae Mii as E3512 seleniurn oxyarion-redicing.bloreactor f:3. F01A(5,833.37.2 1 acatured bacterstancicle 24c08 (EF5:5538; uglios, micfolial fuel cell anxie AO7 F. Proteobacteri? Core-(A11C dror-relicigbaclesian 92° colsci,(sec4.FOs s: AC,E)? Bacterikin F1 (AYSO996) Isolate from spent nuclear fuel pool Beta U?ituitie: Dethletoriomas cite 133 (AY3204 &rarrotsk wasterater treatment rekto: A1038 ico Burkholderlaceae bacterium KWD-17GO-02:43.278 volcar; deposits, Kilauea whica10, tawa SE BG5 incultured acterium coine KCS-15A?28754) penguindroppings sedimets, Ardley Island, Antarctica ECS Uncuttured bacteritant hi21 AF234687 activated sixge from an industrial sewage treatment past 839-0B.E5A38537,805,838 HTO S12 Ho CG45:25:2:09,-(C,CAC38,05.39,12,CO3,631 S3 settinottask?ackusst 3 (AF038483) acrobic atpatiega-deckriyakare leg-adlig bacteriu?h Artured bacteriter civile BAkW484 (DQ264459 polylactate stimulated chromate bioremediatest in gruntilater Aetoriassi-MH1 (E45823 16. Gamma A12 frctired Autmorlassp. core ASP-28 EF878183}sewage anaeropic sludge in recitator-less ho EO gi Klebsiela pne:Rhonlaestrain-R18 (E 278621) Aoi, B04c07 Cof 2 39-E 11A11 80 Destifovibrio desulfuricans subsp desulfurcars ATCC29577 (AF152153} type strala Delta OS GFCS506 TUncuttiged bacterium clare C35 (EF64.4510; . .22 tetrachioroethare contamirated squ:fer )eita lesueuinonagales bacterium.JN18 A94J (DQ 165551) anaerobic FCE dechlorinatinger-richment i-Es sedimedbacter sp., 84 (AY873.993) reductive techiorisation of beta-H3H F. Sostricity, sp, N.M. (dAE32 E315224) too culture gAO3ACSF35,309 ...-- Angerowitrigourkaberisis DSty: S283 (AJC 035) type strain Firmicutes ticultures bacterium clerie A Lac-34C (EU30709) Fed:}-reducing enrichteent of Linsaturated A horizonsci: E) o3. 64 6:56.7,E3sites sp. RMA 15677 (EU176080} perionea tug Synergistes it-3 ot-unculturedAE Actromyces sp. clone EHFSSD32 (EuO71474) cleai room entionment, ESTECHYDRA facsity Actinomyces iscuitured Bacteroidetes xacteriure clerie Blci{7 A.3380) waste gas-degrading community in all industrial birtitef Bacteroidetes Tito tacitured3. bacteriurn clone S.T. G. 182 (EF405450) humar recal simple 8): FIGURES U.S. Patent Apr. 13, 2010 Sheet 7 of 7 US 7.695,834 B1 - O Eirit" O m O airT s --MFCA (day 113) hasg ris-MFC-A (day 126) E AMFC-A (day 136) s 2. are MFC-B (day 162) 3. 41 5 6 7 8 Number of clones sequenced FIGURE 6 US 7,695,834 B1 1. 2 MICROBAL FUEL CELL WITH IMPROVED words, a significant portion of the microorganisms Surround ANODE ing the anode are non-exoelectrogenic and do not contribute to production of electrical current. Another problem is that, This invention was made with government Support under typically, a significant portion of those microorganisms that Contract Number DE-AC05-00OR22725 between the United operate by an exoelectrogenic mechanism do so by the indi States Department of Energy and UT-Battelle, LLC. The U.S. rect donation of electrons to one or more mediators. Both the government has certain rights in this invention. low concentration of exoelectrogenic microorganisms and the low proportion of exoelectrogenic microorganisms which FIELD OF THE INVENTION can operate by a direct electron transfer mechanism are fac 10 tors that contribute to a low degree of efficiency in electrical The present invention relates to the field of microbial fuel power output.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages25 Page
-
File Size-