Orbital Mechanics

Orbital Mechanics

Orbital Mechanics • Planetary launch and entry overview • Energy and velocity in orbit • Elliptical orbit parameters • Orbital elements • Coplanar orbital transfers • Noncoplanar transfers • Time in orbit • Interplanetary trajectories © 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu U N I V E R S I T Y O F Orbital Mechanics MARYLAND 1 ENAE 791 - Launch and Entry Vehicle Design Orbital Mechanics: 500 years in 40 min. • Newton’s Law of Universal Gravitation ! Gm m F = 1 2 ! r2 • Newton’s First Law meets vector algebra −⇥F = m−⇥a U N I V E R S I T Y O F Orbital Mechanics MARYLAND 2 ENAE 791 - Launch and Entry Vehicle Design Relative Motion Between Two Bodies m2 ⇥r2 F⇥12 ⇥r1 F⇥21 m1 F⇥12 = force due to body 1 on body 2 U N I V E R S I T Y O F Orbital Mechanics MARYLAND 3 ENAE 791 - Launch and Entry Vehicle Design Gravitational Motion Let µ = G(m1 + m2) d2~r ~r + µ = ~0 dt2 r3 “Equation of Orbit” - Orbital motion is simple harmonic motion U N I V E R S I T Y O F Orbital Mechanics MARYLAND 4 ENAE 791 - Launch and Entry Vehicle Design Orbital Angular Momentum ⃗ h is angular momentum vector (constant) =⇒ ⃗r and ⃗v are in a constant plane U N I V E R S I T Y O F Orbital Mechanics MARYLAND 5 ENAE 791 - Launch and Entry Vehicle Design Fun and Games with Algebra 0 U N I V E R S I T Y O F Orbital Mechanics MARYLAND 6 ENAE 791 - Launch and Entry Vehicle Design More Algebra, More Fun U N I V E R S I T Y O F Orbital Mechanics MARYLAND 7 ENAE 791 - Launch and Entry Vehicle Design Orientation of the Orbit ~e eccentricity vector, in orbital plane ⌘ ~e points in the direction of periapsis U N I V E R S I T Y O F Orbital Mechanics MARYLAND 8 ENAE 791 - Launch and Entry Vehicle Design Position in Orbit θ = true anomaly: angular travel from perigee passage U N I V E R S I T Y O F Orbital Mechanics MARYLAND 9 ENAE 791 - Launch and Entry Vehicle Design Relating Velocity and Orbital Elements U N I V E R S I T Y O F Orbital Mechanics MARYLAND 10 ENAE 791 - Launch and Entry Vehicle Design Vis-Viva Equation 1 e2 p a(1 e2)= − ⌘ − 2 v2 r − µ 1 2 v2 − a = r − µ ✓ ◆ 2 1 v2 = µ <--Vis-Viva Equation r − a ✓ ◆ v2 µ µ = 2 − r −2a U N I V E R S I T Y O F Orbital Mechanics MARYLAND 11 ENAE 791 - Launch and Entry Vehicle Design Energy in Orbit • Kinetic Energy 1 K.E. v2 K.E. = mν 2 ⇒ = ! 2 m 2 • Potential Energy mµ P.E. µ P.E. = − ⇒ = − ! r m r • Total Energy v2 µ µ Const. = − = − <--Vis-Viva Equation 2 r 2a U N I V E R S I T Y O F Orbital Mechanics MARYLAND 12 ENAE 791 - Launch and Entry Vehicle Design Suborbital Tourism - Spaceship Two U N I V E R S I T Y O F Orbital Mechanics MARYLAND 13 ENAE 791 - Launch and Entry Vehicle Design How Close are we to Space Tourism? • Energy for 100 km vertical climb ! µ µ km2 MJ ! + = 0.965 2 = 0.965 −rE + 100 km rE sec kg ! • Energy for 200 km circular orbit ! µ µ km2 MJ + = 32.2 2 = 32.2 ! −2(rE + 200 km) rE sec kg • Energy difference is a factor of 33! U N I V E R S I T Y O F Orbital Mechanics MARYLAND 14 ENAE 791 - Launch and Entry Vehicle Design Implications of Vis-Viva • Circular orbit (r=a) µ vcircular = ! ! r • Parabolic escape orbit (a tends to infinity) 2µ v = ! escape ! r • Relationship between circular and parabolic orbits vescape = √2vcircular U N I V E R S I T Y O F Orbital Mechanics MARYLAND 15 ENAE 791 - Launch and Entry Vehicle Design Some Useful Constants • Gravitation constant µ = GM – Earth: 398,604 km3/sec2 – Moon: 4667.9 km3/sec2 – Mars: 42,970 km3/sec2 – Sun: 1.327x1011 km3/sec2 • Planetary radii – rEarth = 6378 km – rMoon = 1738 km – rMars = 3393 km U N I V E R S I T Y O F Orbital Mechanics MARYLAND 16 ENAE 791 - Launch and Entry Vehicle Design Classical Parameters of Elliptical Orbits U N I V E R S I T Y O F Orbital Mechanics MARYLAND 17 ENAE 791 - Launch and Entry Vehicle Design Basic Orbital Parameters • Semi-latus rectum (or parameter) 2 ! p = a(1 − e ) • Radial distance as function of orbital position p r = ! 1+e cos θ • Periapse and apoapse distances ! rp = a(1 e) ra = a(1 + e) − • Angular momentum ⃗ h = ⃗r × ⃗v h = √µp U N I V E R S I T Y O F Orbital Mechanics MARYLAND 18 ENAE 791 - Launch and Entry Vehicle Design The Classical Orbital Elements Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993 U N I V E R S I T Y O F Orbital Mechanics MARYLAND 19 ENAE 791 - Launch and Entry Vehicle Design The Hohmann Transfer r2 v2 r1 vapogee v1 vperigee U N I V E R S I T Y O F Orbital Mechanics MARYLAND 20 ENAE 791 - Launch and Entry Vehicle Design First Maneuver Velocities • Initial vehicle velocity ! µ v1 = ! !r1 • Needed final velocity ! µ 2r2 vperigee = ! !r1 !r1 + r2 • Required ΔV µ 2r2 ∆v1 = 1 !r1 "!r1 + r2 − # U N I V E R S I T Y O F Orbital Mechanics MARYLAND 21 ENAE 791 - Launch and Entry Vehicle Design Second Maneuver Velocities • Initial vehicle velocity ! µ 2r1 vapogee = ! !r2 !r1 + r2 • Needed final velocity ! µ v2 = ! !r2 • Required ΔV µ 2r1 ∆v2 = 1 !r2 " − !r1 + r2 # U N I V E R S I T Y O F Orbital Mechanics MARYLAND 22 ENAE 791 - Launch and Entry Vehicle Design Limitations on Launch Inclinations Equator U N I V E R S I T Y O F Orbital Mechanics MARYLAND 23 ENAE 791 - Launch and Entry Vehicle Design Differences in Inclination Line of Nodes U N I V E R S I T Y O F Orbital Mechanics MARYLAND 24 ENAE 791 - Launch and Entry Vehicle Design Choosing the Wrong Line of Apsides U N I V E R S I T Y O F Orbital Mechanics MARYLAND 25 ENAE 791 - Launch and Entry Vehicle Design Simple Plane Change v1 Δv2 vapogee v vperigee 2 U N I V E R S I T Y O F Orbital Mechanics MARYLAND 26 ENAE 791 - Launch and Entry Vehicle Design Optimal Plane Change v v perigee 1 Δv2 vapogee Δv1 v2 U N I V E R S I T Y O F Orbital Mechanics MARYLAND 27 ENAE 791 - Launch and Entry Vehicle Design First Maneuver with Plane Change Δi1 • Initial vehicle velocity ! µ v1 = ! r 1 • Needed final velocity ! µ 2r2 vp = ! r r + r 1 1 2 • Required ΔV ∆v = v2 + v2 2v v cos ∆i 1 1 p − 1 p 1 U N I V E R S I T Y O F Orbital Mechanics MARYLAND 28 ENAE 791 - Launch and Entry Vehicle Design Second Maneuver with Plane Change Δi2 • Initial vehicle velocity ! µ 2r1 va = ! r r + r 2 1 2 • Needed final velocity µ ! v = 2 r ! 2 • Required ΔV ∆v = v2 + v2 2v v cos ∆i 2 2 a − 2 a 2 U N I V E R S I T Y O F Orbital Mechanics MARYLAND 29 ENAE 791 - Launch and Entry Vehicle Design Sample Plane Change Maneuver Optimum initial plane change = 2.20° U N I V E R S I T Y O F Orbital Mechanics MARYLAND 30 ENAE 791 - Launch and Entry Vehicle Design Calculating Time in Orbit U N I V E R S I T Y O F Orbital Mechanics MARYLAND 31 ENAE 791 - Launch and Entry Vehicle Design Time in Orbit • Period of an orbit a3 P = 2⇥ ! µ • Mean motion (average angular velocity) µ n = a3 ! • Time since pericenter passage ! M = nt = E e sin E − ➥M=mean anomaly U N I V E R S I T Y O F Orbital Mechanics MARYLAND 32 ENAE 791 - Launch and Entry Vehicle Design Dealing with the Eccentric Anomaly • Relationship to orbit r = a (1 e cos E) ! − • Relationship to true anomaly θ 1 + e E tan = tan ! 2 1 e 2 − • Calculating M from time interval: iterate ! Ei+1 = nt + e sin Ei until it converges U N I V E R S I T Y O F Orbital Mechanics MARYLAND 33 ENAE 791 - Launch and Entry Vehicle Design Example: Time in Orbit • Hohmann transfer from LEO to GEO – h1=300 km --> r1=6378+300=6678 km – r2=42240 km • Time of transit (1/2 orbital period) 1 a = (r + r ) = 24, 459 km 2 1 2 P a3 ttransit = = ⇥ = 19, 034 sec = 5h17m14s 2 µ U N I V E R S I T Y O F Orbital Mechanics MARYLAND 34 ENAE 791 - Launch and Entry Vehicle Design Example: Time-based Position Find the spacecraf position 3 hours afer perigee ! µ 4 rad n = = 1.650x10− ! a3 sec rp ! e = 1 = 0.7270 − a ! Ej+1 = nt + e sin Ej =1.783 + 0.7270 sin Ej E=0; 1.783; 2.494; 2.222; 2.361; 2.294; 2.328; 2.311; 2.320; 2.316; 2.318; 2.317; 2.317; 2.317 U N I V E R S I T Y O F Orbital Mechanics MARYLAND 35 ENAE 791 - Launch and Entry Vehicle Design Example: Time-based Position (cont.) E =2.317 r = a(1 e cos E) = 12, 387 km − θ 1+e E tan = tan = θ = 160 deg 2 1 e 2 ⇥ − Have to be sure to get the position in the proper quadrant - since the time is less than 1/2 the period, the spacecraf has yet to reach apogee --> 0°<θ<180° U N I V E R S I T Y O F Orbital Mechanics MARYLAND 36 ENAE 791 - Launch and Entry Vehicle Design Velocity Components in Orbit p r = 1+e cos θ dr d p p( e sin θ dθ ) v = = = − − dt r dt dt 1+e cos θ (1 + e cos θ)2 ⇥ pe sin θ dθ v = r (1 + e cos θ)2 dt p r2 dθ e sin θ 1+e cos θ = v = dt r ⇒ r p ⇤h = r v ⇤ ⇥ ⇤ U N I V E R S I T Y O F Orbital Mechanics MARYLAND 37 ENAE 791 - Launch and Entry Vehicle Design Velocity Components in Orbit (cont.) U N I V E R S I T Y O F Orbital Mechanics MARYLAND 38 ENAE 791 - Launch and Entry Vehicle Design Patched Conics • Simple approximation to multi-body motion (e.g., traveling from Earth orbit through solar orbit into Martian orbit) • Treats multibody problem as “hand-offs” between gravitating bodies --> reduces analysis to sequential two- body problems • Caveat Emptor: Tere are a number of formal methods to perform patched conic analysis.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    60 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us