
ﺒﺴﻡ ﺍﷲ ﺍﻟﺭﺤﻤﻥ ﺍﻟﺭﺤﻴﻡ University of Khartoum Faculty of Engineering & Architecture Correlation between Laboratory and Field Permeability of Soils and Rocks A Thesis Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science in Structural Engineering By: Ahmed Abdallah Eltayeb Elfaki June 2006 DEDICATION • To my family • To all people whom works in a tough weather ACKNOWLEDGEMENTS The author wishes to express his great indebtness to the supervisor Dr. Hussien Arabi, Building and Road Research Institute (BRRI), University of Khartoum, for his kind help and guidance. Considerable thanks are due to the staff of (BRRI) for their great assistance. Thanks are extended to the laboratory staff for their help. In addition, I would like to express my appreciation to my family for supporting me. Ahmed ABSTRACT Permeability affects the performance of structure through the soil and rock pavements. Percolation of water, through the interconnected voids of soil and rock pavement, causes a number of soil and rock engineering problems such as settlement of buildings, yield of wells, seepage through and below the earth structures. In this study, laboratory and field permeability tests, based on the principles of falling head and lugeon test, were conducted on different borehole in Merowe irrigation project area and Khartoum New International Airport (KNIA), to study the correlation between the laboratory and the field permeability values. The main objective was to assess whether the field permeability values could be estimated from laboratory permeability values or any other parameter estimated from laboratory or field. The results show that there was a significant difference between the laboratory permeability measured and the field permeability values. The reason behind this discrepancy was further investigated and explained in this study. Nevertheless, there was a very good relationship between the laboratory permeability (KL), and the ratio field/laboratory permeability (Kf/KL). Also there was a good relationship between field permeability values and some parameters estimated from laboratory and field. ﺍﻟﺨﻼﺼـﺔ ﻤﻥ ﺍﻟﻤﻌﺭﻭﻑ ﺃﻥ ﺍﻟﻨﻔﺎﺫﻴﺔ ﺘﺅﺜﺭ ﻋﻠﻰ ﺃﺩﺍﺀ ﺍﻟﻤﻨﺸﺂﺕ ﺨﻼل ﻁﺒﻘﺎﺕ ﺍﻟﺘﺭﺒﺔ ﻭﺍﻟﺼﺨﻭﺭ. ﺘﺴﺭﺏ ﺍﻟﻤﻴﺎﻩ ﺨﻼل ﺍﻟﻔﺭﺍﻏﺎﺕ ﺍﻟﻤﺘﺭﺍﺒﻁﺔ ﻟﻁﺒﻘﺎﺕ ﺍﻟﺘﺭﺒﺔ ﻭﺍﻟﺼﺨﻭﺭ ﻴﺴﺒﺏ ﻋ ﺩ ﺩ ﺍﹰ ﻤﻥ ﺍﻟﻤﺸﺎﻜل ﺍﻟﻬﻨﺩﺴﻴﺔ ﺍﻟﻤﺨﺘﻠﻔﺔ ﻤﺜل ﻫﺒﻭﻁ ﺍﻟﻤﺒﺎﻨﻰ, ﺘﻬﺩﻡ ﺍﻵﺒﺎﺭ ﻭﺍﻟﺘﺴﺭﺏ ﺨﻼل ﻭﺃﺴﻔل ﺍﻟﻤﻨﺸﺂﺕ ﺍﻟﺘﺭﺍﺒﻴﻪ. ﻓﻰ ﻫﺫﻩ ﺍﻟﺩﺭﺍﺴﺔ ﺃﺠﺭﻴﺕ ﺍﻟﺘﺠﺎﺭﺏ ﺍﻟﺤﻘﻠﻴﺔ ﻭﺍﻟﻤﻌﻤﻠﻴﺔ ﻓﻰ ﻋﺩﺓ ﺍﹼﺒﺎﺭ (Boreholes ) ﻓﻰ ﻤﺸﺭﻭﻉ ﺭﻯ ﻤﺭﻭﻯ ﻭﻤﻁﺎﺭ ﺍﻟﺨﺭﻁﻭﻡ ﺍﻟﺠﺩﻴﺩ ﻭﺫﻟﻙ ﻟﺩﺭﺍﺴﺔ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﻨﻔﺎﺫﻴﺔ ﺍﻟﺤﻘﻠﻴﺔ ﻭﺍﻟﻤﻌﻤﻠﻴﺔ. ﺍﻟﻬﺩﻑ ﻤﻥ ﻫﺫﻩ ﺍﻟﺩﺭﺍﺴﺔ ﻫﻭ ﺘﻘﻴﻴﻡ ﺍﻤﻜﺎﻨﻴﺔ ﺤﺴﺎﺏ ﻗﻴﻡ ﺍﻟﻨﻔﺎﺫﻴﺔ ﺍﻟﺤﻘﻠﻴﺔ ﻤﻥ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻌﻤﻠﻴﺔ ﺃﻭ ﺃﻯ ﻤﻌﺎﻤﻼﺕ ﺘﺤﺴﺏ ﻓﻰ ﺍﻟﺤﻘل ﺃﻭ ﺍﻟﻤﻌﻤل. ﻤﻥ ﺨﻼل ﺍﻟﺩﺭﺍﺴﺔ ﺍﺘﻀﺢ ﺃﻥ ﻫﻨﺎﻟﻙ ﺍﺨﺘﻼﻑ ﻜﺒﻴﺭ ﺒﻴﻥ ﺍﻟﻘﻴﻡ ﺍﻟﺤﻘﻠﻴﺔ ﻭﺍﻟﻤﻌﻤﻠﻴﺔ, ﻭﻗﺩ ﺸﺭﺤﺕ ﻭﻭﻀﺤﺕ ﺃﺴﺒﺎﺏ ﻫﺫﺍ ﺍﻷﺨﺘﻼﻑ ﺒﺘﻔﺼﻴل ﻓﻲ ﻫﺫﺍ ﺍﻟﺒﺤﺙ. ﻤﻥ ﻨﺎﺤﻴﺔ ﺃﺨﺭﻯ, ﺘﻡ ﺍﺴﺘﻨﺒﺎﻁ ﻋﻼﻗﺔ ﻗﻭﻴﺔ ﺒﻴﻥ ﺍﻟﻨﻔﺎﺫﻴﺔ ﺍﻟﻤﻌﻤﻠﻴﺔ ﻭﻨﺴﺒﺔ ﺍﻟﻨﻔﺎﺫﻴﺔ ﻓﻰ ﺍﻟﺤﻘل ﺍﻟﻲ ﺍﻟﻨﻔﺎﺫﻴﺔ ﻓﻰ ﺍﻟﻤﻌﻤل ( kf/kL ratio ). ﺃﻴﻀﺎ ﻭﺠﺩﺕ ﻋﻼﻗﺔ ﻗﻭﻴﺔ ﺒﻴﻥ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺤﻘﻠﻴﺔ ﻭﺒﻌﺽ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﺘﻲ ﺘﻡ ﺤﺴﺎﺒﻬﺎ ﻓﻲ ﺍﻟﻤﻌﻤل ﻭﺍﻟﺤﻘل. Table of Contents Acknowledgment ………………………………………………………………………………… i Abstract ………………………………………………………………………………… ii Abstract in Arabic ………………………………………………………………………………… iii Table of Content ………………………………………………………………………………… iv List of Figures ………………………………………………………………………………… viii List of Tables ………………………………………………………………………………… ix List of Plates ………………………………………………………………………………… xi Chapter 1. Introduction 1.1 General …………………………………………………………………… 1 1.2 Need and Scope…………………………………………………………… 2 1.3 Objective of the Study…………………………………………………… 2 1.4 Thesis Content …………………………………………………………… 3 Literature Review Chapter 2. 2.1 Introduction ………………………………………………………………. 4 2.2 Definition of Permeability ……………………………………………….. 4 2.3 Coefficient of Permeability ……………………………………………… 6 2.4 Classification of Permeability …………………….................................... 8 2.5 Methods for Determining Permeability………………………………...… 18 2.5.1 Indirect Methods for Determining Permeability………………… …….. 18 2.5.1.1 Visual Classification ……………………..………………………….. 18 2.5.1.2 Hazen’s Equation ……………………………………………………. 18 2.5.1.3 Correlation of In situ Horizontal Permeability and Hazen’s Effective Green Size……………………………………………………………………. 19 2.5.1.4 Kozeny-Carman Equation ……………………………………………. 19 2.5.1.5 Computation of Permeability from Consolidation Test……………… 20 2.5.2 Laboratory Methods for Determining Permeability…………………….. 20 2.5.2.1 General………………………………………………………………... 20 2.5.2.2 Constant Head Test…………………………………………………… 22 2.5.2.3 Falling Head Test…………………………………………………….. 22 2.5.2.4 Possible Source of Errors in Laboratory Permeability Test …………. 25 2.5.3 Field Methods for Determining Permeability…………………………. 26 2.5.3.1 Falling Head Method………………………………………………… 26 2.5.3.2 Rising Water Level Method…………………………………………. 26 2.5.3.3Constant Water Level Method……………………………………….... 27 2.5.3.4 Lugeon Water Pressure Test………………………………………….. 27 2.5.3.5 Field Pump Test………………………………………………………. 29 2.6 Factors Influencing Permeability ………………………………………… 30 2.6.1 Particle Size…………………………………………………………….. 30 2.6.2 Structure of Soil Mass………………………………………………….. 32 2.6.3 Particle Shape and Surface Roughness…………………………………. 34 2.6.4 Void Ratio………………………………………………………………. 37 2.6.5 Properties of Water……………………………………………………... 39 2.6.6 Degree of Saturation……………………………………………………. 40 2.6.7 Influence of Density…………………………………………………….. 41 2.7 Control of Permeability…………………………………………………… 43 2.7.1 Methods of Reducing the Coefficient of Permeability………………… 45 2.7.1.1Gleization……………………………………………………………… 45 2.7.1.2 Clay Lining…………………………………………………………… 45 2.7.1.3 Polyethylene Liner…………………………………………………… 46 2.7.1.4 Butyl Rubber Liner…………………………………………………… 46 2.7.1.5 Chemical Solutions…………………………………………………… 47 2.7.1.5.1 Sodium Carbonate………………………………………………….. 47 2.7.1.5.2 Bentonite……………………………………………………………. 48 2.7.1.5.3 Soil Cement…………………………………………………………. 48 2.7.2 Reducing the Hydraulic Gradient………………………………...…….. 49 2.7.3 Controlling the Effluent………………………………………………… 49 Method of Testing and Results Chapter 3. 3.1 Introduction …………………………………………………………........ 50 3.2 Area of Study……………………………………………………………... 51 3.3General Site Description………………………………………………….. 58 3.4 Boreholes……………………………………………………… 64 3.5 Field Tests………………………………………………………………… 67 3.5.1 Falling Head Test………………………………………………………. 67 3.5.2 Water Pressure Test (Lugeon Method)………………………………… 87 3.5.2.1 Cleaning Test Sections……………………………………………….. 87 3.5.2.2 Length of Test Section……………………………………………….. 87 3.5.2.3 Size of Rod or Pipe to Use in Tests………………………………….. 87 3.5.2.4 Pumping Equipment…………………………………………………. 88 3.5.2.5 Swivels for Use in Tests……………………………………………… 88 3.5.2.6 Location of Pressure Gauges………………………………………….. 88 3.5.2.7 Pressures Used in Testing……………………………………………. 88 3.5.2.8 Arrangement of Equipment…………………………………………… 89 3.5.2.9 Methods of Testing………………………………………………….... 89 3.5.2.9.1 Method 1 (Single packer)…………………………………………… 89 3.5.2.9.2 Method 2 (Double packer)………………………………………….. 89 3.6 Laboratory Testing……………………………………………………….. 99 3.6.1 Liquid and Plastic Limit Tests (Atterberge Limits)……………………. 99 3.6.1.1 The Liquid limit Test ………………………………………………… 99 3.6.1.2 The Plastic Limit Test………………………………………………… 99 3.6.2 Grain Size Distribution…………………………………….…………… 102 3.6.2.1 Description…………………………………………………………… 102 3.6.3 Permeability Tests (Falling Head Method)………………………..…… 105 3.6.3.1 Objective……………………………………………………………… 105 3.6.3.2 Planning and Organization……………………………………………. 105 3.6.3.3 Knowledge of Equipment……………………………..……………… 105 3.6.3.4 Preparation of Dynamically Compacted Disturbed Sample………….. 106 3.6.3.5 Experimental Procedure………………………………………………. 106 Correlation and Discussion Chapter 4. 4.1 introduction……………………………………………………………….. 109 4.2 Correlation of Field Permeability and Physical properties………………. 109 4.3 Correlation of Laboratory and Field Permeability Values ……………. … 120 4.4 Conclusions …………………………………………………………….. 126 Conclusions and Recommendation Chapter 5. 5.1 Conclusions……………………………………………………………... 127 5.2 Suggestion for Further Studies…………………………………………… 128 References ………………………………………………………………………………… 129 Appendix (A1) ………………………………………………………………………………… 134 Appendix (A2) ………………………………………………………………………………… 174 Appendix (A3) ………………………………………………………………………………… 230 Appendix (B1) ………………………………………………………………………………… 246 Appendix (B2) ………………………………………………………………………………… 258 List of Figures Chapter 2. Literature Review 2.1 Flow of A single Incompressible Fluid………………………………………. 6 2.2 Approximate Values Types of Coefficient of Permeability for Various Types of Soils and the Recommended Method of Determining these Values. ( After A Casagrande and Rutled 1940)……………………………………………… 12 2.3 Permeability Conversion Chart. (After Lohman 1972)…………..................... 13 2.4 Approximate Range in Coefficient of Permeability of Soils and Rocks. (After Milligan 1976)………………..……………………………………….. 14 Relationship Between In situ Horizontal Permeability and Effective 2.5 Size…………………………………………………….................................... 21 2.6 Sketch of A soil Aquifer Profile……………………………………………… 29 2.7 Standard Chart for Visual Estimation of Sphericity and Roundness of Cohesionless Soils. (After Krumbein and Sloss 1951)……………….……..... 35 2.8 Variation of k with e2, e2 / 1+e and e3 /1+e……………………………….. 37 2.9 Permeability Versus Degree of Saturation for Various Sands. (After Lamba 1951)………………………………………………………………………….. 41 2.10 Details of Plastic Lining………………………………………..…………….. 47 Chapter 3. Method of Testing and Results 3.1 Map of the Sudan ……………………………………………………………. 52 3.2 Location of the Merowe Project Site………………………………………… 53 3.3 Location of
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages292 Page
-
File Size-