Sign Flip Triangulation of the Amplituhedron

Sign Flip Triangulation of the Amplituhedron

Sign Flip Triangulation of the Amplituhedron Ryota Kojima SOKENDAI, KEK theory centor Based on RK, JHEP 1904 (2019) 085 arxiv:1812.01822 [hep-th] RK, Cameron Langer, Jaroslav Trnka and Minshan Zheng(UC Davis, QMAP), in progress Strings and Fields 2019 at YITP 8/20 Introduction • Scattering amplitude: Basic objects in QFT. • Recently there are many progress about the understanding of the new structure of scattering amplitude. • Studying and calculating scattering amplitudes became a new direction in theoretical physics. • Major motivations: • Efficient calculations of the scattering amplitudes • Use amplitudes as a probe to explore quantum field theory 2 Introduction • Efficient calculations of the scattering amplitudes • Use amplitudes as a probe to explore quantum field theory • Example: BCFW recursion relation (Britto, Cachazo, Feng, Witten 2005) • Method for building higher-point amplitudes from lower-point <latexit sha1_base64="UNc4SGyPxwXJet7OEnzpssxTFaM=">AAACpHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvYp2unxxRlpmeUJBYV5ZcrmKTrKMQAIZqwKXZhs/R4AWUDPQMwUMBkGEIZygxQEJAvsJwhhiGFIZ8hmaGUIZchlSGPoQTIzmFIZCgGwmgGQwYDhgKgWCxDNVCsCMjKBMunMtQycAH1lgJVpQJVJAJFs4FkOpAXDRXNA/JBZhaDdScDbckB4iKgTgUGVYOrBisNPhucMFht8NLgD06zqsFmgNxSCaSTIHpTC+L5uySCvxPUlQukSxgyELrwurmEIY3BAuzWTKDbC8AiIF8kQ/SXVU3/HGwVpFqtZrDI4DXQ/QsNbhocBvogr+xL8tLA1KDZDFzACDBED25MRpiRnqGBnmGgibKDEzQqOBikGZQYNIDhbc7gwODBEMAQCrR3KcNphisMV5nUmHyYgplCIUqZGKF6hBlQAFMcAFY5oLQ=</latexit> g + g 4g, g + g 5g, g + g 6g ! ! ! Feynman diagrams 220 2485 34300 BCFW 3 6 20 • It is possible to calculate all order amplitudes in Planar N=4 SYM from BCFW. (Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka 2010) 3 Introduction • Efficient calculations of the scattering amplitudes • Use amplitudes as a probe to explore quantum field theory • Geometrization of scattering amplitudes “Amplitude = Volume of a geometric object” Example; Planar N=4 SYM The amplituhedron (Z) (N. Arkani-Hamed, J. Trnka 2013) A<latexit sha1_base64="rtbfKwWuf3iK8FfI4E6z8Bd1xAI=">AAACfHichVHLSuRAFD0d3+2r1YWCG7FHUdTmRkTFlY/NLH21ig+aJJYaOi+S6gYN/QP+wCxmpSIiOl/hxh9w4SeISwU3InOTDojKjLeoqlOn7rl1qkr3LDOQRPcppaa2rr6hsSnd3NLa1p7p6FwL3JJviLzhWq6/oWuBsExH5KUpLbHh+UKzdUus68WFaH+9LPzAdJ1VeeiJHVvbd8w909AkU4VM97atyQNDs8K5SiF0Ru3RYmVoczhdyGQpR3H0fQVqArJIYtHNXGAbu3BhoAQbAg4kYwsaAm5bUEHwmNtByJzPyIz3BSpIs7bEWYIzNGaLPO7zaithHV5HNYNYbfApFneflX0YoDu6pCe6pSt6oNd/1grjGpGXQ571qlZ4hfbjnpWXb1U2zxIH76r/epbYw3Ts1WTvXsxEtzCq+vLRr6eVmeWBcJBO6ZH9n9A93fANnPKzcb4kln8j+gD183N/BWvjOZVy6tJEdnY++YpG9KIfQ/zeU5jFTywiH597hmv8Sb0pP5QRZayaqqQSTRc+hDL5F1vukqY=</latexit> n,m,k Z1 • k-plane in k+m dimensional space • Defined as a generalization of convex polytope. Z2 Zn Z4 • m=4 ; physical amplituhedron n,k(Z) A Z3 4 Introduction • For each amplituhedron, we can define a volume form; Canonical Form ⌦ has logarithmic singularities at all boundaries of (Z) ⌦ An,k n -point N k MHV amplitude Canonical form of (Z) <latexit sha1_base64="Ck+7417GpCiWzl11ZaMzZBz8aSA=">AAACdHichVHLLgRBFD3T3uMxg42EhZiMWE1ui4RYCRtLr0GCTLpbzahMT3enumaEiR/wAxZWhIj4DBs/YOETxJKwsXCnpxNBcDvVderUPbdO1bUDV4aa6CFhtLS2tXd0diW7e3r7Uun+gfXQrypH5B3f9dWmbYXClZ7Ia6ldsRkoYVVsV2zY5YXG/kZNqFD63po+CMROxSp5sigdSzNVSKe2XVHUSpb2tKWUv19IZyhHUYz+BGYMMohjyU9fYRu78OGgigoEPGjGLiyE/G3BBCFgbgd15hQjGe0LHCHJ2ipnCc6wmC3zv8SrrZj1eN2oGUZqh09xeShWjiJL93RNz3RHN/RI77/Wqkc1Gl4OeLabWhEUUsdDq2//qio8a+x9qv70rFHETORVsvcgYhq3cJr62uHJ8+rsSrY+Tuf0xP7P6IFu+QZe7cW5XBYrp0hyA8zvz/0TrE/mTMqZy1OZufm4FZ0Yxhgm+L2nMYdFLCEf9eQUF7hMvBojRsbINlONRKwZxJcwch9lApCN</latexit> ⌦ <latexit sha1_base64="seuqwV9vlEHPhS7NYNRX4KJB8gw=">AAAClHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvox+QmlmQkJ+ZUO9bGV8eADawuSk2prc6r1YFyk3JKU2urs2trNaI04wWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3qkMuxmOMBxlEmOyYXJmcoUoZWKE6hFmQAFMfgBIMp2t</latexit> n,k A $ in Momentum twistor space Z Z =(λa,yaa˙ λa) <latexit sha1_base64="LLrb5iZoYGqAX98+LVL0WNbrfdQ=">AAACj3ichVHLShxBFD22z4yv0WwC2UgGRUMYbougCIYhbpKdr1HR0aa6p9TCnu6mu2Zg0swPZJWdC1cGQhD3bhWyyQ9k4SeISwPZuPB2T4MYSXKbrjp17j23TlXZgasiTXTVYXR2dff09j3L9Q8MDg3nR0bXI78eOrLs+K4fbtoikq7yZFkr7crNIJSiZrtywz5cTPIbDRlGyvfWdDOQOzWx76k95QjNlJV/vWWphcmKy4qqsNSueNPkMRaVqq9j0WplmV0xlbPyBSpSGmNPgZmBArJY8vPfUEEVPhzUUYOEB83YhUDE3zZMEALmdhAzFzJSaV6ihRxr61wluUIwe8jjPq+2M9bjddIzStUO7+LyH7JyDOP0k07pln7QGV3T3V97xWmPxEuTZ7utlYE1/OnF6u//qmo8axw8qP7pWWMPc6lXxd6DlElO4bT1jY9Ht6vzK+PxBH2hG/Z/Qlf0nU/gNX45X5flyjGSBzD/vO6nYH26aFLRXJ4plN5lT9GHl3iFSb7vWZTwHkso876fcY4LXBojxqzx1ii1S42OTPMcj8L4cA/jjZnm</latexit> i i i k · · · N MHV → amplitude with K+2 negative pμσaa = paa = λaλ˜a i μ i i i helicity particles yaa˙ yaa˙ = paa˙ i − i+1 i • Calculate the scattering amplitude = Construct the volume form of the amplituhedron: this is purely geometrical ! 5 Introduction Geometrization of scattering amplitudes Ω What happensCanonical during form the scattering Amplituhedron process of elementary particles? An Scattering Amplitude ℒ Lagrangian Feynman diagram 6 Introduction • Efficient calculations of the scattering amplitudes BCFW recursion relation • There are another recursion relations Local representation, Momentum twistor diagram… Question • What is the relation between these recursion relations? • Can we obtain another recursion relation? We use the geometrization of scattering amplitudes 7 Motivation One of the triangulation of the BCFW Recursion relation amplituhedron Of cause there are various way of the triangulation • Question: Is it possible to obtain new recursion relations from the triangulation of the amplituhedron? BCFW ? • In this work, we found new recursion relations of the 2-loop MHV, 1-loop NMHV amplitude. Introduction Review of the amplituhedron and sign flip New recursion relation of 2-loop MHV and 1-loop NMHV Summary 9 Review of the amplituhedron and sign flip The definition of the amplituhedron ( Z ) A<latexit sha1_base64="rtbfKwWuf3iK8FfI4E6z8Bd1xAI=">AAACfHichVHLSuRAFD0d3+2r1YWCG7FHUdTmRkTFlY/NLH21ig+aJJYaOi+S6gYN/QP+wCxmpSIiOl/hxh9w4SeISwU3InOTDojKjLeoqlOn7rl1qkr3LDOQRPcppaa2rr6hsSnd3NLa1p7p6FwL3JJviLzhWq6/oWuBsExH5KUpLbHh+UKzdUus68WFaH+9LPzAdJ1VeeiJHVvbd8w909AkU4VM97atyQNDs8K5SiF0Ru3RYmVoczhdyGQpR3H0fQVqArJIYtHNXGAbu3BhoAQbAg4kYwsaAm5bUEHwmNtByJzPyIz3BSpIs7bEWYIzNGaLPO7zaithHV5HNYNYbfApFneflX0YoDu6pCe6pSt6oNd/1grjGpGXQ571qlZ4hfbjnpWXb1U2zxIH76r/epbYw3Ts1WTvXsxEtzCq+vLRr6eVmeWBcJBO6ZH9n9A93fANnPKzcb4kln8j+gD183N/BWvjOZVy6tJEdnY++YpG9KIfQ/zeU5jFTywiH597hmv8Sb0pP5QRZayaqqQSTRc+hDL5F1vukqY=</latexit> n,m,k I : k-plane in k+m dimensional space Ya n a<latexit sha1_base64="hOBD9Dhdu45pGyR/2zsbyAePlvE=">AAACb3ichVHLSsNAFD2Nr1pfVRcKghSLoiDlRgRFEIpuXLbVqmBFkjhqaJqEZFqoxR/wA3ThwgeIiJ/hxh9w4SeIK1Fw48LbNCAq6h1m5syZe+6cmdFdy/Ql0UNEaWpuaW2Ltsc6Oru6e+K9fau+U/YMkTccy/HWdc0XlmmLvDSlJdZdT2gl3RJrenGxvr9WEZ5vOvaKrLpis6Tt2uaOaWiSqYI2r04WjG1H+pPFrXiSUhRE4idQQ5BEGBknfoUCtuHAQBklCNiQjC1o8LltQAXBZW4TNeY8RmawL3CAGGvLnCU4Q2O2yOMurzZC1uZ1vaYfqA0+xeLusTKBUbqna3qhO7qhR3r/tVYtqFH3UuVZb2iFu9VzOLj89q+qxLPE3qfqT88SO5gNvJrs3Q2Y+i2Mhr6yf/yyPJcbrY3RBT2x/3N6oFu+gV15NS6zIneCGH+A+v25f4LVqZRKKTU7nUwvhF8RxRBGMM7vPYM0lpBBns91cYRTnEWelQFlWEk0UpVIqOnHl1AmPgDM+435</latexit> =1, ,k I I ··· Ya = caiZi I =1, ,k+ m <latexit sha1_base64="JSscDD1R4t/ZDAonHGmCavgQP8I=">AAAChHichVHLLixRFF3KRevr0ZjcxODK7RAD6ezyCJG4ESbXrD3am0pVOThRr1RVd0KlhyZ+wMCI5EbElC8w8QMGPkEMSUwM7K6uRBDsSp2zztp77bPOOYZnySAkuq1Ran/U1TekGtM/m5pbWjNt7fOBW/RNUTBdy/UXDT0QlnREIZShJRY9X+i2YYkFY2eykl8oCT+QrjMX7npizda3HLkpTT1kSsv8Xlqf0vSx1aBoa5EcU8vrkVM2tUiX5WVNci6TpRzF0fURqAnIIom8mznFKjbgwkQRNgQchIwt6Aj4W4EKgsfcGiLmfEYyzguUkWZtkasEV+jM7vC4xauVhHV4XekZxGqTd7H491nZhW66oTN6oGs6pzt6/rRXFPeoeNnl2ahqhae1HvyaffpWZfMcYvtV9aXnEJsYib1K9u7FTOUUZlVf2jt8mB2d6Y566ITu2f8x3dIVn8ApPZr/p8XMEdL8AOr76/4I5vtzKuXU6cHs+ETyFCl04g96+b6HMY5/yKPA++7jHBe4VOqVPmVAGaqWKjWJpgNvQvn7Alfnlcs=</latexit> i=1 X ··· • ; Positive Grassmannian: matrix mod cai ∈ G+(k, n) k × n GL(k) ca ca > 0 a1 < <ak h 1 ··· k i ··· • I ; Positive Matrix: matrix Zi ∈ M+(k + m, n) (k + m) × n ⟨Za1, ⋯, Zan⟩ > 0 a1 < ⋯ < an • This space is the generalization of the interior of the convex polytope. Convex polytope Amplituhedron (Z) A<latexit sha1_base64="rtbfKwWuf3iK8FfI4E6z8Bd1xAI=">AAACfHichVHLSuRAFD0d3+2r1YWCG7FHUdTmRkTFlY/NLH21ig+aJJYaOi+S6gYN/QP+wCxmpSIiOl/hxh9w4SeISwU3InOTDojKjLeoqlOn7rl1qkr3LDOQRPcppaa2rr6hsSnd3NLa1p7p6FwL3JJviLzhWq6/oWuBsExH5KUpLbHh+UKzdUus68WFaH+9LPzAdJ1VeeiJHVvbd8w909AkU4VM97atyQNDs8K5SiF0Ru3RYmVoczhdyGQpR3H0fQVqArJIYtHNXGAbu3BhoAQbAg4kYwsaAm5bUEHwmNtByJzPyIz3BSpIs7bEWYIzNGaLPO7zaithHV5HNYNYbfApFneflX0YoDu6pCe6pSt6oNd/1grjGpGXQ571qlZ4hfbjnpWXb1U2zxIH76r/epbYw3Ts1WTvXsxEtzCq+vLRr6eVmeWBcJBO6ZH9n9A93fANnPKzcb4kln8j+gD183N/BWvjOZVy6tJEdnY++YpG9KIfQ/zeU5jFTywiH597hmv8Sb0pP5QRZayaqqQSTRc+hDL5F1vukqY=</latexit> n,m,k n generalize n I I I I Y = ciZi Ya = caiZi <latexit sha1_base64="ll6T7Cv+ii63Mdhwco8k/zHMEY8=">AAACgHichVHLLgRBFD3ae7wGG4nNxIRYjdsiIRKJsGHnNd6m090KFf1Kd88kdGZh6wcsrEhExIZvsPEDFj5BLElsLNzp6UQQ3EpVnTp1z61TVYZnySAkeqxRauvqGxqbmlMtrW3tHenOruXALfqmyJuu5fqrhh4ISzoiH8rQEqueL3TbsMSKsT9d2V8pCT+QrrMUHnhiy9Z3HbkjTT1kSkv3rhVmJzaDoq1FckItFyKnnDE1ua7JwqyWzlKO4sj8BGoCskhizk1fYhPbcGGiCBsCDkLGFnQE3DagguAxt4WIOZ+RjPcFykixtshZgjN0Zvd53OXVRsI6vK7UDGK1yadY3H1WZtBPD3RFL3RP1/RE77/WiuIaFS8HPBtVrfC0juOexbd/VTbPIfY+VX96DrGDsdirZO9ezFRuYVb1pcOTl8Xxhf5ogM7pmf2f0SPd8Q2c0qt5MS8WTpHiD1C/P/dPsDycUymnzo9kJ6eSr2hCL/owyO89iknMYA55PvcIl7jBraIog8qQolZTlZpE040voYx/AKCGk6o=</latexit>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us