Combinatorics of Electrical Networks

Combinatorics of Electrical Networks

Combinatorics of electrical networks Thomas Lam September 2016 Electrical networks An electrical resistor network is an undirected weighted graph Γ. 1 0:1 4 1:5 1 2 1 2 1:3 0:5 Edge weight = conductance = 1/resistance Some vertices are designated as boundary vertices. The rest are interior vertices. Λij = current flowing through vertex j when the voltage is set to 1 at vertex i and 0 at all other vertices. Possibly surprisingly, Λ(Γ) is a symmetric matrix. If all vertices are considered boundary vertices, then Λ(Γ) is simply the Laplacian matrix of Γ. Response matrix The electrical properties are described by the response matrix #boundary vertices #boundary vertices Λ(Γ) : R −! R voltage vector 7−! current vector which gives the current that flows through the boundary vertices when specified voltages are applied. Response matrix The electrical properties are described by the response matrix #boundary vertices #boundary vertices Λ(Γ) : R −! R voltage vector 7−! current vector which gives the current that flows through the boundary vertices when specified voltages are applied. Λij = current flowing through vertex j when the voltage is set to 1 at vertex i and 0 at all other vertices. Possibly surprisingly, Λ(Γ) is a symmetric matrix. If all vertices are considered boundary vertices, then Λ(Γ) is simply the Laplacian matrix of Γ. Ohm's Law (1827) For each resistor we have (V1 − V2) = I × R where I = current flowing through the resistor V1; V2 = voltages at the two ends of resistor R = resistance of the resistor To compute Λ(Γ), we give variables to each edge (current through that edge) and each vertex (voltage at that vertex). Then solve a large system of linear equations. Axioms of electricity The matrix Λ(Γ) can be computed using only two axioms. Kirchhoff's Law (1845) The sum of currents flowing into an interior vertex is equal to 0. Axioms of electricity The matrix Λ(Γ) can be computed using only two axioms. Kirchhoff's Law (1845) The sum of currents flowing into an interior vertex is equal to 0. Ohm's Law (1827) For each resistor we have (V1 − V2) = I × R where I = current flowing through the resistor V1; V2 = voltages at the two ends of resistor R = resistance of the resistor To compute Λ(Γ), we give variables to each edge (current through that edge) and each vertex (voltage at that vertex). Then solve a large system of linear equations. Detection problem Given a matrix M, how can we tell if M = Λ(Γ) for some Γ? Equivalence problem When do two networks Γ and Γ0 satisfy Λ(Γ) = Λ(Γ0)? Some basic problems Inverse problem Can we recover Γ from Λ(Γ)? Applications of this to e.g. electrical impedance tomography (medical imaging technique). Equivalence problem When do two networks Γ and Γ0 satisfy Λ(Γ) = Λ(Γ0)? Some basic problems Inverse problem Can we recover Γ from Λ(Γ)? Applications of this to e.g. electrical impedance tomography (medical imaging technique). Detection problem Given a matrix M, how can we tell if M = Λ(Γ) for some Γ? Some basic problems Inverse problem Can we recover Γ from Λ(Γ)? Applications of this to e.g. electrical impedance tomography (medical imaging technique). Detection problem Given a matrix M, how can we tell if M = Λ(Γ) for some Γ? Equivalence problem When do two networks Γ and Γ0 satisfy Λ(Γ) = Λ(Γ0)? Electrically equivalent networks Series-parallel transformations: b ab a b a + b a + b a Degenerate reductions: a a Y − ∆, or star-triangle transformation (Kennelly 1899) a C b B c A Γ Γ0 bc ac ab A = ; B = ; C = ; a + b + c a + b + c a + b + c AB + AC + BC AB + AC + BC AB + AC + BC a = ; b = ; c = : A B C Planar electrical networks 4 3 1 4 1 5:3 5 2 2 2 1 Planar electrical networks Theorem (Curtis-Ingerman-Morrow and Colin de Verdi`ere-Gitler-Vertigan) Consider planar electrical networks with n boundary vertices. 1 Any two planar electrical networks Γ, Γ0 such that Λ(Γ) = Λ(Γ0) are related by local electrical equivalences. 2 The space of response matrices consists of symmetric n × n matrices, with row sums equal to 0, and such that certain \circular minors" are nonnegative. Groves (Carroll-Speyer and Kenyon-Wilson) A grove F in Γ is a subforest such that every interior vertex is connected to some boundary vertex. 4 3 5 2 1 Boundary partitions The boundary partition σ(F ) of a grove F is the noncrossing partition whose parts are boundary vertices belonging to the same component of F . 4 3 5 2 1 σ(F ) = (2; 3; 4 j 1; 5) Planarity =) noncrossing. Noncrossing partitions 10 9 11 8 12 7 1 6 2 5 3 4 The noncrossing partition σ = (1; 2; 5; 9 j 3; 4 j 6; 7; 8 j 10; 11 j 12). Noncrossing partitions Theorem The number of noncrossing partitions on [n] is equal to the Catalan number 1 2n C = : n n + 1 n For n = 3, we have 5 noncrossing partitions. (123); (1j23); (12j3); (13j2); (1j2j3): We collect all the Lσ's together to obtain a map NCn Γ 7−! L(Γ) = (Lσ(Γ))σ2N Cn 2 P : Grove measurements Let NCn denote the set of noncrossing partitions on f1;:::; ng. Grove generating function For σ 2 N Cn, and an electrical network Γ, define X Lσ(Γ) = wt(F ) σ(F )=σ where the weight of a grove F is the product of the weights of the edges belonging to F . Grove measurements Let NCn denote the set of noncrossing partitions on f1;:::; ng. Grove generating function For σ 2 N Cn, and an electrical network Γ, define X Lσ(Γ) = wt(F ) σ(F )=σ where the weight of a grove F is the product of the weights of the edges belonging to F . We collect all the Lσ's together to obtain a map NCn Γ 7−! L(Γ) = (Lσ(Γ))σ2N Cn 2 P : Example 1 a b 2 c 3 Γ L1j2j3 = a + b + c; L12j3 = ab; L1j23 = bc; L13j2 = ac; L123 = abc 4 L(Γ) = (a + b + c : ab : bc : ac : abc) 2 P If part follows from the formula essentially due to Kirchhoff: L(i;jjsingletons) Λij = L(all singletons) Capturing electrical equivalence Two networks are electrically equivalent if they have the same response matrix. Theorem Γ and Γ0 are electrically equivalent if and only if L(Γ) = L(Γ0). Counting forests captures electrical properties. Capturing electrical equivalence Two networks are electrically equivalent if they have the same response matrix. Theorem Γ and Γ0 are electrically equivalent if and only if L(Γ) = L(Γ0). Counting forests captures electrical properties. If part follows from the formula essentially due to Kirchhoff: L(i;jjsingletons) Λij = L(all singletons) Kenyon and Wilson give (alternating) formulae for all minors of Λ. Matrix-tree theorem A much more famous formula of Kirchhoff (no planarity is needed): Theorem We have L det(Λ)~ = (all connected) L(all singletons) where det~ denotes the reduced determinant: remove one row and one column before taking the determinant. The generating function L(all connected) counts spanning trees of Γ. Matrix-tree theorem A much more famous formula of Kirchhoff (no planarity is needed): Theorem We have L det(Λ)~ = (all connected) L(all singletons) where det~ denotes the reduced determinant: remove one row and one column before taking the determinant. The generating function L(all connected) counts spanning trees of Γ. Kenyon and Wilson give (alternating) formulae for all minors of Λ. Invariance under electrical equivalences Kirchhoff's formula allows one to recover Λ(Γ) (response matrix) from L(Γ) (grove counts). To show that L(Γ) depends only on Λ(Γ), one checks that NC L(Γ) 2 P n is invariant under series-parallel transformations, degenerate reductions, and star-triangle transformations. Y − ∆-transformation 1 1 a C b 2 B 2 c A 3 3 Γ Γ0 L(Γ) a + b + c ab bc ac abc = L(Γ0) 1 C A B AB + BC + AB 4 The same point in P under bc ac ab A = ; B = ; C = : a + b + c a + b + c a + b + c Compactification Let us use nonnegative edge weights. The image of the map Γ 7! L(Γ) is not compact. We let NCn En = fL(Γ) j Γ planar electrical network g ⊂ P denote the closure of the image, called the compactified space of planar electrical networks. The topology on this space corresponds to continuously varying conductances. When a conductance goes to 0 or 1, we change the combinatorics. Cactus networks Roughly speaking, a point L 2 En is represented by an electrical network where some of the boundary points have been glued together (or \shorted"), in a planar way. 1 9 2 3 4 8 6 5 7 (Conductances are not shown.) Electroids The electroid E(Γ) of Γ 2 En is the set E(Γ) = fσ j Lσ(Γ) 6= 0g ⊂ N Cn: These are noncrossing partitions for which there exist groves inducing such a partition. This is an invariant of a planar graph. 1 4 2 3 E = f(1j2j3j4); (12j3j4); (23j1j4); (34j1j2); (14j23); (12j34); (14j23); (123j4); (234j1); (134j2); (124j3); (1234)g missing: (13j2j4) and (24j1j3) Electroid stratification Question What are all possible electroids? How many electroids are there? We have the electroid stratification G En = EE : E This stratification is analogous to the matroid stratification of a Grassmannian. More precisely, it is an analogue of the positroid (positive matroid) stratification.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    43 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us