Problem Solving and Recreational Mathematics

Problem Solving and Recreational Mathematics

Problem Solving and Recreational Mathematics Paul Yiu Department of Mathematics Florida Atlantic University Summer 2012 Chapters 1–44 August 1 Monday 6/25 7/2 7/9 7/16 7/23 7/30 Wednesday 6/27 *** 7/11 7/18 7/25 8/1 Friday 6/29 7/6 7/13 7/20 7/27 8/3 ii Contents 1 Digit problems 101 1.1 When can you cancel illegitimately and yet get the cor- rectanswer? .......................101 1.2 Repdigits.........................103 1.3 Sortednumberswithsortedsquares . 105 1.4 Sumsofsquaresofdigits . 108 2 Transferrable numbers 111 2.1 Right-transferrablenumbers . 111 2.2 Left-transferrableintegers . 113 3 Arithmetic problems 117 3.1 AnumbergameofLewisCarroll . 117 3.2 Reconstruction of multiplicationsand divisions . 120 3.2.1 Amultiplicationproblem. 120 3.2.2 Adivisionproblem . 121 4 Fibonacci numbers 201 4.1 TheFibonaccisequence . 201 4.2 SomerelationsofFibonaccinumbers . 204 4.3 Fibonaccinumbersandbinomialcoefficients . 205 5 Counting with Fibonacci numbers 207 5.1 Squaresanddominos . 207 5.2 Fatsubsetsof [n] .....................208 5.3 Anarrangementofpennies . 209 6 Fibonacci numbers 3 211 6.1 FactorizationofFibonaccinumbers . 211 iv CONTENTS 6.2 TheLucasnumbers . 214 6.3 Countingcircularpermutations . 215 7 Subtraction games 301 7.1 TheBachetgame ....................301 7.2 TheSprague-Grundysequence . 302 7.3 Subtraction of powers of 2 ................303 7.4 Subtractionofsquarenumbers . 304 7.5 Moredifficultgames. 305 8 The games of Euclid and Wythoff 307 8.1 ThegameofEuclid . 307 8.2 Wythoff’sgame .....................309 8.3 Beatty’sTheorem . 311 9 Extrapolation problems 313 9.1 Whatis f(n + 1) if f(k)=2k for k =0, 1, 2 ...,n? . 313 1 9.2 Whatis f(n + 1) if f(k)= k+1 for k =0, 1, 2 ...,n? . 315 9.3 Whyis ex notarationalfunction? . 317 10 The Josephus problem and its generalization 401 10.1 TheJosephusproblem . 401 10.2 Chamberlain’ssolution . 403 10.3 The generalized Josephus problem J(n, k) .......404 11 The nim game 407 11.1 Thenimsum.......................407 11.2 Thenimgame ......................408 12 Prime and perfect numbers 411 12.1 Infinitudeofprimenumbers . 411 12.1.1 Euclid’sproof. 411 12.1.2 Fermatnumbers . 411 12.2 ThesieveofEratosthenes . 412 12.2.1 A visualization of the sieveof Eratosthenes . 412 12.3 Theprimenumbersbelow20000 . 414 12.4 Perfectnumbers . 415 12.5 Mersenneprimes. 416 12.6 CharlesTwiggonthefirst10perfectnumbers . 417 12.7 Primesinarithmeticprogression . 421 CONTENTS v 12.8 Theprimenumberspirals . 421 12.8.1 The prime number spiral beginningwith 17 . 422 12.8.2 The prime number spiral beginningwith 41 . 423 13 Cheney’s card trick 501 13.1 Threebasicprinciples . 501 13.1.1 Thepigeonholeprinciple . 501 13.1.2 Arithmetic modulo 13 ..............501 13.1.3 Permutationsofthreeobjects. 502 13.2 Examples.........................503 14 Variations of Cheney’s card trick 505 14.1 Cheney card trick with spectator choosing secret card . 505 14.2 A 3-cardtrick ......................507 15 The Catalan numbers 511 15.1 Numberofnonassociativeproducts . 511 16 The golden ratio 601 16.1 Divisionofasegmentinthegoldenratio . 601 16.2 Theregularpentagon . 603 16.3 Construction of 36◦, 54◦, and 72◦ angles . 604 16.4 Themostnon-isoscelestriangle . 608 17 Medians and angle Bisectors 609 17.1 Apollonius’Theorem . 609 17.2 Anglebisectortheorem . 611 17.3 Theanglebisectors . 612 17.4 Steiner-LehmusTheorem . 613 18 Dissections 615 18.1 Dissection of the 6 6 square. .. .. .. .615 × 18.2 Dissectionof a 7 7 squareintorectangles. 617 18.3 Dissectarectangletoformasquare× . 619 18.4 Dissectionofasquareintothreesimilarparts . 620 19 Pythagorean triangles 701 19.1 PrimitivePythagoreantriples . 701 19.1.1 Rationalangles . 702 vi CONTENTS 19.1.2 Some basic properties of primitive Pythagorean triples.......................702 19.2 A Pythagorean trianglewithan inscribedsquare . 704 19.3 When are x2 px q bothfactorable? . 705 19.4 Dissection of− a square± into Pythagorean triangles . 705 20 Integer triangles with a 60◦ or 120◦ angle 707 20.1 Integer triangles with a 60◦ angle ............707 20.2 Integer triangles with a 120◦ angle ...........710 21 Triangles with centroid on incircle 713 21.1 Construction . 714 21.2 Integertriangleswithcentroidontheincircle . 715 22 The area of a triangle 801 22.1 Heron’sformulafortheareaofatriangle . 801 22.2 Herontriangles. 803 22.2.1 TheperimeterofaHerontriangleiseven . 803 22.2.2 The area of a Heron triangle is divisible by 6 . 803 22.2.3 Heron triangles with sides < 100 .........804 22.3 Heron triangles with sides in arithmetic progression . 805 22.4 IndecomposableHerontriangles . 807 22.5 Herontriangleaslatticetriangle. 809 23 Heron triangles 811 23.1 Herontriangleswithareaequaltoperimeter . 811 23.2 Herontriangleswithintegerinradii . 812 23.3 Division of a triangle into two subtriangles with equal incircles .........................813 23.4 Inradiiinarithmeticprogression. 817 23.5 Herontriangleswithintegermedians . 818 23.6 Herontriangleswithsquareareas . 819 24 TriangleswithsidesandonealtitudeinA.P. 821 24.1 Newton’ssolution . 821 24.2 Thegeneralcase . 822 25 The Pell Equation 901 25.1 The equation x2 dy2 =1 ...............901 25.2 The equation x2 − dy2 = 1 ..............903 − − CONTENTS vii 25.3 The equation x2 dy2 = c ...............903 − 26 Figurate numbers 907 26.1 Whichtriangularnumbersaresquares?. 907 26.2 Pentagonalnumbers . 909 26.3 Almostsquaretriangularnumbers. 911 26.3.1 Excessivesquaretriangularnumbers . 911 26.3.2 Deficientsquaretriangularnumbers . 912 27 Special integer triangles 915 27.1 AlmostisoscelesPythagoreantriangles . 915 27.1.1 The generators of the almost isosceles Pythagorean triangles......................916 27.2 Integer triangles (a, a +1, b) with a 120◦ angle . 917 28 Heron triangles 1001 28.1 Herontriangleswithconsecutivesides . 1001 28.2 Heron triangles with two consecutivesquare sides . 1002 29 Squares as sums of consecutive squares 1005 29.1 Sumofsquaresofnaturalnumbers . 1005 29.2 Sumsofconsecutivesquares: oddnumbercase . 1008 29.3 Sumsofconsecutivesquares: evennumbercase . 1010 29.4 Sumsofpowersofconsecutiveintegers . 1012 30 Lucas’ problem 1013 30.1 Solution of n(n + 1)(2n +1)=6m2 for even n . 1013 30.2 The Pell equation x2 3y2 =1 revisited . 1014 − 30.3 Solution of n(n + 1)(2n +1)=6m2 for odd n . .1015 31 Some geometry problems 1101 32 Basic geometric constructions 1109 32.1 Somebasicconstructionprinciples . 1109 32.2 Geometricmean . .1110 32.3 Harmonicmean . .1111 32.4 A.M G.M. H.M. ..................1112 ≥ ≥ viii CONTENTS 33 Construction of a triangle from three given points 1115 33.1 Someexamples . .1115 33.2 Wernick’sconstructionproblems . 1117 34 The classical triangle centers 1201 34.1 Thecentroid . .. .. .. .. .. .. .1201 34.2 Thecircumcircleandthecircumcenter . 1202 34.3 Theincenterandtheincircle . 1203 34.4 TheorthocenterandtheEulerline. 1204 34.5 Theexcentersandtheexcircles . 1205 35 The nine-point circle 1207 35.1 Thenine-pointcircle. 1207 35.2 Feuerbach’stheorem. 1208 35.3 Lewis Carroll’s unused geometry pillowproblem . 1209 35.4 Johnson’stheorem . 1211 35.5 Triangles with nine-point center on the circumcircle . 1212 36 The excircles 1213 36.1 Arelationamongtheradii . 1213 36.2 Thecircumcircleoftheexcentraltriangle . 1214 36.3 Theradicalcircleoftheexcircles . 1215 36.4 Apollonius circle: the circular hull of the excircles . 1216 36.5 Three mutually orthogonal circles with given centers . 1217 37 The Arbelos 1301 37.1 Archimedes’twincircletheorem . 1301 37.2 Incircleofthearbelos . 1302 37.2.1 Constructionofincircleofarbelos . 1304 37.3 Archimedeancirclesinthearbelos . 1304 37.4 Constructionsoftheincircle. 1307 38 Menelaus and Ceva theorems 1309 38.1 Menelaus’theorem . 1309 38.2 Ceva’stheorem. .1311 39 Routh and Ceva theorems 1317 39.1 Barycentriccoordinates . 1317 39.2 Cevianandtraces . .1318 39.3 Areaandbarycentriccoordinates . 1320 CONTENTS ix 40 Elliptic curves 1401 40.1 AproblemfromDiophantus. 1401 40.2 Dudeney’spuzzleofthedoctorofphysic . 1403 40.3 Grouplawon y2 = x3 + ax2 + bx + c .........1404 41 Applications of elliptic curves to geometry problems 1407 41.1 Pairs of isoscelestriangleand rectanglewithequal perime- tersandequalareas . .1407 41.2 Triangles with a median, an altitude, and an angle bi- sectorconcurrent. 1409 42 Integer triangles with an altitude equal to a bisector 1411 42.1 Aquarticequation . .1411 42.2 Transformation of a quartic equation into an elliptic curve1413 43 The equilateral lattice L (n) 1501 43.1 Countingtriangles . 1501 43.2 Countingparallelograms. 1504 43.3 Countingregularhexagons . 1505 44 Counting triangles 1509 44.1 Integer triangles of sidelengths n ...........1509 44.2 Integer scalene triangles with sidelengths≤ n . .1510 44.3 Number of integer triangles with perimeter≤n . .1511 44.3.1 The partition number p3(n) ............1511 Chapter 1 Digit problems 1.1 When can you cancel illegitimately and yet get the correct answer? Let ab and bc be 2-digit numbers. When do such illegitimate cancella- tions as ab ab a bc = bc6 = c , 6 a allowing perhaps further simplifications of c ? 16 1 19 1 26 2 49 4 Answer. 64 = 4 , 95 = 5 , 65 = 5 , 98 = 8 . Solution. We may assume a, b, c not all equal. 10a+b a Suppose a, b, c are positive integers 9 such that 10b+c = c . (10a + b)c = a(10b + c), or (9a + b≤)c = 10ab. If any two of a, b, c are equal, then all three are equal. We shall therefore assume a, b, c all distinct. 9ac = b(10a c). If b is not divisible− by 3, then 9 divides 10a c = 9a +(a c). It follows that a = c, a case we need not consider. − − It remains to consider b =3, 6, 9. Rewriting (*) as (9a + b)c = 10ab. If c

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    299 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us