Wacker Oxidation H O + – II H , Cl Pd Cl Pamela Tadross H3C H Stoltz Group Literature Presentation OH December 8, 2008 8 PM, 147 Noyes Pdiicl – HO 2 OH Pdiicl

Wacker Oxidation H O + – II H , Cl Pd Cl Pamela Tadross H3C H Stoltz Group Literature Presentation OH December 8, 2008 8 PM, 147 Noyes Pdiicl – HO 2 OH Pdiicl

2 CuICl C2H4 – II 2 Cl + 2 Cu Cl2 II 2– Pd Cl4 Cl– O Pd0 H3C H PdIICl – + HCl 3 Mechanistic Studies on H2O the Wacker Oxidation H O + – II H , Cl Pd Cl Pamela Tadross H3C H Stoltz Group Literature Presentation OH December 8, 2008 8 PM, 147 Noyes PdIICl – HO 2 OH PdIICl H3C Cl– PdIICl Cl Cl – Pd Cl Cl + H2O Pd H2O HO Origins of the Wacker Oxidation F. C. Phillips, 1894: 2– – PdCl4 + C2H4 + H2O Pd(0) + CH3CHO + 2 HCl + 2 Cl Phillips, F. C. Am. Chem. J. 1984, 16, 255-277. Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, S.; Sabel, A. Angew. Chem. Int. Ed. Engl. 1962, 1, 80. Origins of the Wacker Oxidation F. C. Phillips, 1894: 2– – PdCl4 + C2H4 + H2O Pd(0) + CH3CHO + 2 HCl + 2 Cl Smidt, Wacker Chemie, 1959: – 2– Pd(0) + 2 CuCl2 + 2 Cl 2 CuCl + PdCl4 2 CuCl + 1/2 O2 + 2 HCl 2 CuCl2 + H2O Phillips, F. C. Am. Chem. J. 1984, 16, 255-277. Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, S.; Sabel, A. Angew. Chem. Int. Ed. Engl. 1962, 1, 80. Origins of the Wacker Oxidation 2– – PdCl4 + C2H4 + H2O Pd(0) + CH3CHO + 2 HCl + 2 Cl – 2– Pd(0) + 2 CuCl2 + 2 Cl 2 CuCl + PdCl4 2 CuCl + 1/2 O2 + 2 HCl 2 CuCl2 + H2O Phillips, F. C. Am. Chem. J. 1984, 16, 255-277. Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, S.; Sabel, A. Angew. Chem. Int. Ed. Engl. 1962, 1, 80. Origins of the Wacker Oxidation 2– – PdCl4 + C2H4 + H2O Pd(0) + CH3CHO + 2 HCl + 2 Cl – 2– Pd(0) + 2 CuCl2 + 2 Cl 2 CuCl + PdCl4 2 CuCl + 1/2 O2 + 2 HCl 2 CuCl2 + H2O C2H4 + 1/2 O2 CH3CHO Net Result: Air oxidation of ethylene to acetaldehyde! Phillips, F. C. Am. Chem. J. 1984, 16, 255-277. Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, S.; Sabel, A. Angew. Chem. Int. Ed. Engl. 1962, 1, 80. Origins of the Wacker Oxidation 2– – PdCl4 + C2H4 + H2O Pd(0) + CH3CHO + 2 HCl + 2 Cl – 2– Pd(0) + 2 CuCl2 + 2 Cl 2 CuCl + PdCl4 2 CuCl + 1/2 O2 + 2 HCl 2 CuCl2 + H2O C2H4 + 1/2 O2 CH3CHO Net Result: Air oxidation of ethylene to acetaldehyde! ! First organopalladium reaction applied on industrial scale. ! First rendered commercial in 1960. ! At one point was responsible for the production of over 2 billion pounds per year of acetaldehyde! Phillips, F. C. Am. Chem. J. 1984, 16, 255-277. Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, S.; Sabel, A. Angew. Chem. Int. Ed. Engl. 1962, 1, 80. Origins of the Wacker Oxidation 2– – PdCl4 + C2H4 + H2O Pd(0) + CH3CHO + 2 HCl + 2 Cl – 2– Pd(0) + 2 CuCl2 + 2 Cl 2 CuCl + PdCl4 2 CuCl + 1/2 O2 + 2 HCl 2 CuCl2 + H2O C2H4 + 1/2 O2 CH3CHO Net Result: Air oxidation of ethylene to acetaldehyde! ! First organopalladium reaction applied on ! Prior acetaldehyde production: industrial scale. a) Oxymercuration of acetylene b) Dehydrogenation of ethanol ! First rendered commercial in 1960. ! Wacker process eventually replaced ! At one point was responsible for the because of more efficient ways of production of over 2 billion pounds per producing acetic acid (i.e. Monsanto year of acetaldehyde! process). Phillips, F. C. Am. Chem. J. 1984, 16, 255-277. Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, S.; Sabel, A. Angew. Chem. Int. Ed. Engl. 1962, 1, 80. Early Kinetic Studies Conditions: ! First order in PdII 2– –d[C2H4] k [PdCl ] [C H ] [PdII] = 0.005 - 0.04 M Rate = = 4 2 4 – – 2 + ! Second order Cl inhibition [Cl–] = 0.1 - 1.0 M dt [Cl ] [H ] + [H ] = 0.04 -1.0 M ! First order acid inhibition Henry, P. M. J. Am. Chem. Soc. 1964, 86, 3246. Jira, R.; Sedlmeier, J.; Smidt, J. Liebigs Ann. Chem. 1966, 693, 99. Moiseev, I. I.; Vargaftik, M. N.; Syrkin, Ya. K. Dokl. Akad. Nauk. SSSR 1963, 153, 140. Early Kinetic Studies Chloride Inhibition Conditions: ! First order in PdII 2– –d[C2H4] k [PdCl ] [C H ] [PdII] = 0.005 - 0.04 M Rate = = 4 2 4 – – 2 + ! Second order Cl inhibition [Cl–] = 0.1 - 1.0 M dt [Cl ] [H ] + [H ] = 0.04 -1.0 M ! First order acid inhibition Source of Chloride Inhibition: 2– – 1 Cl Cl Cl – inhibition Pd + C2H4 Pd + Cl – Cl Cl Cl Cl [Cl ] – 1 Cl + H O Cl + Cl– inhibition Pd 2 Pd [Cl–] Cl Cl Cl OH2 Henry, P. M. J. Am. Chem. Soc. 1964, 86, 3246. Jira, R.; Sedlmeier, J.; Smidt, J. Liebigs Ann. Chem. 1966, 693, 99. Moiseev, I. I.; Vargaftik, M. N.; Syrkin, Ya. K. Dokl. Akad. Nauk. SSSR 1963, 153, 140. Early Kinetic Studies Proton Inhibition Conditions: ! First order in PdII 2– –d[C2H4] k [PdCl ] [C H ] [PdII] = 0.005 - 0.04 M Rate = = 4 2 4 – – 2 + ! Second order Cl inhibition [Cl–] = 0.1 - 1.0 M dt [Cl ] [H ] + [H ] = 0.04 -1.0 M ! First order acid inhibition – – OH Outer-sphere hydroxide attack: Cl Cl CH CH OH Pd Pd 2 2 Predicted to be 103 times faster Cl OH2 Cl OH2 than diffusion controlled process Henry, P. M. J. Am. Chem. Soc. 1964, 86, 3246. Jira, R.; Sedlmeier, J.; Smidt, J. Liebigs Ann. Chem. 1966, 693, 99. Moiseev, I. I.; Vargaftik, M. N.; Syrkin, Ya. K. Dokl. Akad. Nauk. SSSR 1963, 153, 140. Early Kinetic Studies Proton Inhibition Conditions: ! First order in PdII 2– –d[C2H4] k [PdCl ] [C H ] [PdII] = 0.005 - 0.04 M Rate = = 4 2 4 – – 2 + ! Second order Cl inhibition [Cl–] = 0.1 - 1.0 M dt [Cl ] [H ] + [H ] = 0.04 -1.0 M ! First order acid inhibition – – OH Outer-sphere hydroxide attack: Cl Cl CH CH OH Pd Pd 2 2 Predicted to be 103 times faster Cl OH2 Cl OH2 than diffusion controlled process H2O – Cl Cl CH CH OH Outer-sphere water attack: Pd Pd 2 2 + H+ Predicted to occur by an anti Cl OH2 Cl OH2 hydroxypalladation mechanism Henry, P. M. J. Am. Chem. Soc. 1964, 86, 3246. Jira, R.; Sedlmeier, J.; Smidt, J. Liebigs Ann. Chem. 1966, 693, 99. Moiseev, I. I.; Vargaftik, M. N.; Syrkin, Ya. K. Dokl. Akad. Nauk. SSSR 1963, 153, 140. Early Kinetic Studies Proton Inhibition Conditions: ! First order in PdII 2– –d[C2H4] k [PdCl ] [C H ] [PdII] = 0.005 - 0.04 M Rate = = 4 2 4 – – 2 + ! Second order Cl inhibition [Cl–] = 0.1 - 1.0 M dt [Cl ] [H ] + [H ] = 0.04 -1.0 M ! First order acid inhibition – – OH Outer-sphere hydroxide attack: Cl Cl CH CH OH Pd Pd 2 2 Predicted to be 103 times faster Cl OH2 Cl OH2 than diffusion controlled process H2O – Cl Cl CH CH OH Outer-sphere water attack: Pd Pd 2 2 + H+ Predicted to occur by an anti Cl OH2 Cl OH2 hydroxypalladation mechanism – – Inner-sphere hydroxyl Cl Cl Cl CH CH OH Pd Pd + H+ Pd 2 2 attack: Predicted to Cl OH Cl OH Cl OH occur by a syn 2 2 hydroxypalladation mechanism Henry, P. M. J. Am. Chem. Soc. 1964, 86, 3246. Jira, R.; Sedlmeier, J.; Smidt, J. Liebigs Ann. Chem. 1966, 693, 99. Moiseev, I. I.; Vargaftik, M. N.; Syrkin, Ya. K. Dokl. Akad. Nauk. SSSR 1963, 153, 140. Kinetic Isotope Effects Early Evidence for an Inner-Sphere Syn Hydroxypalladation Mechanism D D O 2– – + PdCl4 + H2O + Pd(0) + 2 HCl + 2 Cl D D D3C D kH = 1.07 k H H O D 2– – + PdCl4 + H2O + Pd(0) + 2 HCl + 2 Cl H H H3C H Henry, P. M. J. Org. Chem. 1973, 38, 2415. Kosaki, M.; Isemura, M.; Kitaura, K.; Schinoda, S.; Saito, Y. J. Mol. Catal. 1977, 2, 351. Saito, Y.; Schinoda, S. J. Mol. Catal. 1980, 9, 461. Kinetic Isotope Effects Early Evidence for an Inner-Sphere Syn Hydroxypalladation Mechanism D D O 2– – + PdCl4 + H2O + Pd(0) + 2 HCl + 2 Cl D D D3C D kH = 1.07 k H H O D 2– – + PdCl4 + H2O + Pd(0) + 2 HCl + 2 Cl H H H3C H KIE for decomposition step determined by competitive isotope effect experiment: H-shift O DH2C D D D D D – k 2– H + PdCl4 + H2O HO Pd(OH2)Cl2 = 1.70 k H H H H D O D-shift HD2C H Henry, P. M. J. Org. Chem. 1973, 38, 2415. Kosaki, M.; Isemura, M.; Kitaura, K.; Schinoda, S.; Saito, Y. J. Mol. Catal. 1977, 2, 351. Saito, Y.; Schinoda, S. J. Mol. Catal. 1980, 9, 461. Kinetic Isotope Effects Early Evidence for an Inner-Sphere Syn Hydroxypalladation Mechanism KIE 1.07 and competitive KIE of 1.70 indicates that the slow step occurs outer-sphere anti hydroxypalladation before decomposition. – Cl Cl Cl Cl Pd Pd + + H2O + H H2O H2O CH2CH2OH O +H+ –H+ H3C H – – Cl Cl Cl Cl Pd + H O Pd HO 2 H2O CH2CH2OH inner-sphere syn hydroxypalladation Henry, P. M. J. Org. Chem. 1973, 38, 2415. Kosaki, M.; Isemura, M.; Kitaura, K.; Schinoda, S.; Saito, Y. J. Mol. Catal. 1977, 2, 351. Saito, Y.; Schinoda, S. J. Mol. Catal. 1980, 9, 461. Kinetic Isotope Effects Early Evidence for an Inner-Sphere Syn Hydroxypalladation Mechanism KIE 1.07 and competitive KIE of 1.70 indicates that the slow step occurs outer-sphere anti hydroxypalladation before decomposition. – Cl Cl Cl Cl Pd Pd + + H2O + H H2O H2O CH2CH2OH fast slow O +H+ –H+ H3C H fast – slow – Cl Cl Cl Cl Pd + H O Pd HO 2 H2O CH2CH2OH inner-sphere syn hydroxypalladation anti pathway has decomposition as the slow step syn pathway has hydroxypalladation as the slow step Henry, P.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    98 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us