Baryons Beyond the Quark-Diquark Model

Baryons Beyond the Quark-Diquark Model

Baryons beyond the quark-diquark model Gernot Eichmann (Darmstadt University of Technology, Germany) with Reinhard Alkofer Andreas Krassnigg Diana Nicmorus (University of Graz, Austria) Gernot Eichmann (TU Darmstadt) MENU 2010 18. 3. 2010 1 / 15 Motivation Hadron structure: Covariant bound-state equations Nucleon & delta properties: Dyson-Schwinger equations (DSEs) masses, em. form factors, of QCD provide input: Green functions N transition, . Ab-initio, but truncations necessary “QCD modeling” Are baryons predominantly →훥훾 quark-diquark systems? Chiral limit heavy quarks Complements lattice QCD, Chiral structure, quark models,⟷ effective field theories. role of the pion cloud How are quarks and gluons distributed in hadrons? Mesons: How does the proton spin Bethe-Salpeter equation (BSE) come about? Maris, Roberts ‘97; Maris, Tandy ’99; . Baryons: A comprehensive description of Quark-diquark model hadrons within QCD is needed. Oettel, Hellstern, Alkofer, Reinhardt ‘98, Chiral symmetry breaking, dynamical GE, Alkofer, Krassnigg, Schwinzerl ‘08, . mass generation, confinement Faddeev equation GE, Alkofer, Krassnigg, Nicmorus: PRL 104, 201601 (2010) Gernot Eichmann (TU Darmstadt) MENU 2010 18. 3. 2010 2 / 15 Bound-state equations Mesons: Bound-state amplitudes Bethe-Salpeter equation On-shell: (2) K ( 푃� � �푀� 푃 푞 Covariants quark-spin and OAM 훤 푞, 푃) = �� 푓 (푞�, 푞�∙푃� ) 휏� (푞, 푃) eigenstates in particle’s� restframe: Baryons: ⇔ Three-body equation 0 meson: 4 covariants: (s,p) 1 meson: 8 covariants: (s,p,d) (3) ⁻ 훾� , . K Nucleon: 64 covariants (s,p,d) (Quark-diquark⁻ model: 8) 훾� , . 푝 푃 푞 Dressed quark propagator solve quark DSE ( ( 2- and 3-quark⇒ kernels푀 푝�), 퐴 푝�). the ‘modeling’ part. (2) K ~ , , , . Gernot Eichmann (TU Darmstadt) MENU 2010 18. 3. 2010 3 / 15 Bound-state equations Three-body equation: = + + + Irreducible Quark-quark correlations 3-body assumed as dominant structure in baryons. diagrams Hints: lattice QCD, BSE, hadron spectrum, ... 3-gluon coupling to each quark, ... Gernot Eichmann (TU Darmstadt) MENU 2010 18. 3. 2010 4 / 15 Bound-state equations Faddeev equation: + + Quark-quark correlations � assumed as dominant structure in baryons. Hints: lattice QCD, BSE, hadron spectrum, ... Still numerically expensive, Need to know but we can do this now. Quark propagator Full covariant structure obtained from its Dyson-Schwinger equation of the amplitude! GE, Alkofer, Krassnigg, Nicmorus: 2-quark kernel PRL 104, 201601 (2010) Practical strategy: construct ansätze EPJ Web Conf. 3, 3028 (2010) which satisfy AXWTI ( chiral symmetry) ⇔ Gernot Eichmann (TU Darmstadt) MENU 2010 18. 3. 2010 4 / 15 DSEs Dyson- Quark propagator: Gluon propagator: -1 -1 -1 -1 Schwinger = + = + equations: Quantum equations Ghost propagator: + + of motion for QCD’s -1 -1 Green functions. = + Infinitely coupled system. + + Ghost-gluon vertex: Roberts, Williams: Prog.Part.Nucl.Phys. 33 (1994) Alkofer, von Smekal: = + + + Phys.Rept. 353 (2001) Fischer: J. Phys. G 32 (2006) Quark-gluon vertex: Momentum limits: UV: Perturbation theory = + + + + IR: Infrared exponents Numerical solutions require truncations! + + + + Gernot Eichmann (TU Darmstadt) MENU 2010 18. 3. 2010 5 / 15 DSEs Dyson- Quark propagator: Gluon propagator: Schwinger -1 -1 -1 -1 2 -1 = + = D(k ) equations: Quantum equations of motion for QCD’s Green functions. Infinitely coupled system. “Rainbow truncation” Roberts, Williams: Prog.Part.Nucl.Phys. 33 (1994) Alkofer, von Smekal: Phys.Rept. 353 (2001) Fischer: J. Phys. G 32 (2006) Quark-gluon vertex: Momentum limits: UV: Perturbation theory = Г(k ) IR: Infrared exponents Numerical solutions require truncations! Gernot Eichmann (TU Darmstadt) MENU 2010 18. 3. 2010 5 / 15 Rainbow-Ladder Truncation Quark DSE: “Rainbow” Meson BSE: “Ladder” ( 2 ) 2 = ( ) -1 = -1 + 훼 푘 훼 푘 Why rainbow-ladder? simple exact in the UV respects chiral symmetry & its spontaneous breaking GMOR: = 2 chiral-limit pion is massless ⇒ 푓��푚� 푚��푞푞�� Good description (up to the bottom quark) of pseudoscalar & vector-meson ground states Effective coupling ( 2 ) is model input. 훼 푘 Gernot Eichmann (TU Darmstadt) MENU 2010 18. 3. 2010 6 / 15 Rainbow-Ladder Truncation Quark DSE: “Rainbow” Meson BSE: “Ladder” ( 2 ) 2 = ( ) -1 = -1 + 훼 푘 훼 푘 Why rainbow-ladder? What’s beyond rainbow-ladder? simple Pion cloud: Attractive (~100 MeV) exact in the UV in chiral region; reduces hadron masses, respects chiral symmetry & decay constants; enhances charge radii its spontaneous breaking GMOR: = 2 chiral-limit pion is massless ⇒ 푓��푚� 푚��푞푞�� NJL: Oertel, Buballa, Wambach (2001) Good description (up to the bottom quark) of BSE: Pichowsky, Walawalkar, Capstick (1999) ; pseudoscalar & vector-meson ground states Fischer, Nickel, Wambach (2007); Fischer, Williams (2008) 2 Effective coupling ( ) is model input. Non-resonant corrections: Repulsive (~100 MeV for ); 훼 푘 see talks by Cancellation with pion cloud? Christian Fischer & Richard Williams Fischer, Williams, PRL 103 (2009) 푚� ⇒ Gernot Eichmann (TU Darmstadt) MENU 2010 18. 3. 2010 6 / 15 Rainbow-Ladder Truncation Effective coupling: ‘Fixed strength’ ( ): Maris, Roberts, Tandy, Bhagwat, the only model input! adjust to reproduce experiment Krassnigg, . good description of , ( 2 ) = ( ², ) + ( ²) ground푐 states ⇒ 휋 휌 Maris,훼 푘 Tandy:푐 훼PRC�� 60푘 (1999)휔 훼�� 푘 results insensitive to : depend only on “integrated strength” 휔 0.5 Deep IR: confinement 1.5 15 2 ² [ ²] [ ] IR enhancement: ( ) 0.4 DCSB, mass generation, 1.4 10 hadron(variation physics of ) 푘 0.3 퐺푒푉 UV: perturbation theory, free훼 quarks and gluons 1.3 5 ( 2 ) 0.2 ln / 휔 휋훾� 푒푓푓 푘 훼 푘� 훬� �� 0 0.1 1.2 0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0 [ ] [ ] 1.1 1.2 0.22 푘� 퐺푒푉� [ ݉] ࡜ ܩܸ݁ 1.0 0.8 0.18 ݂࡜ ܩܸ݁ 0.9 0.4 푐 0.8 0.14 푚� 0.0 0.7 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.1 0.2 0.3 0.4 0.5 [ ] [ ] [ ] 푚�� 퐺푒푉� Gernot Eichmann (TU Darmstadt) MENU 2010 푚�� 18.퐺푒푉 3.� 2010 7 / 15 Rainbow-Ladder Truncation Effective coupling: ‘Fixed strength’ ( ): Maris, Roberts, Tandy, Bhagwat, the only model input! adjust to reproduce experiment Krassnigg, . good description of , ( 2 ) = ( ², ) + ( ²) ground푐 states ⇒ 휋 휌 Maris,훼 푘 Tandy:푐 훼PRC�� 60푘 (1999)휔 훼�� 푘 ‘Core model’ ( ): GE, Alkofer, Cloet, Krassnigg, adjust to reproduce hadronic Roberts : PRC 77 (2008) quark core w/o pion cloud consistent푐 response in masses, results insensitive to : decay constants, charge radii depend only on “integrated strength” ⇒ 휔 0.5 Deep IR: confinement 1.5 15 2 ² [ ²] [ ] IR enhancement: ( ) 0.4 DCSB, mass generation, 1.4 10 hadron(variation physics of ) 푘 0.3 퐺푒푉 UV: perturbation theory, free훼 quarks and gluons 1.3 5 ( 2 ) 0.2 ln / 휔 휋훾� 푒푓푓 푘 훼 푘� 훬� �� 0 0.1 1.2 0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0 [ ] [ ] 1.1 1.2 0.22 푘� 퐺푒푉� [ ݉] ࡜ ܩܸ݁ 1.0 0.8 0.18 ݂࡜ ܩܸ݁ 0.9 0.4 푐 0.8 0.14 푚� 0.0 0.7 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.1 0.2 0.3 0.4 0.5 [ ] [ ] [ ] 푚�� 퐺푒푉� Gernot Eichmann (TU Darmstadt) MENU 2010 푚�� 18.퐺푒푉 3.� 2010 7 / 15 A quick detour: the quark-diquark model Faddeev equations neglect 3q correlations: pairwise qq interaction; involve qq T-matrix as intermediate step T (2) T (2) � � � � � � � 휙� � 휙� 휙� � � � Rainbow-ladder kernel: Diquark ansatz for qq T-matrix: timelike diquark poles in T-matrix T (2) Diquark BSE Im P2 = Total diquark Diquarks� ⎯ momentum P 푃� 푀� Diquark BSE: solve for lightest diquarks: Re P 2 scalar (0 ), �axial-vector (1 ). diquark masses & amplitudes 1⁺ 0⁺ ⁺ ⁺ Quark-diquark BSE nucleon mass & amplitudes ⇒ ⇒ Quark exchange between quark and diquark binds nucleon; gluon exchange between quarks 훷 훷 binds diquarks. Gernot Eichmann (TU Darmstadt) MENU 2010 18. 3. 2010 8 / 15 A quick detour: the quark-diquark model Effective coupling: ‘Fixed strength’ ( ): Quark-diquark model the only model input! adjust to reproduce experiment and masses inherit behavior of good description of , , , meson properties. No baryonic input! 2 푐 푁 훥 ( ) = ( ², ) + ( ²) ground states GE et al., PRC 79 & Nicmorus et al., PRD 80 ⇒ 휋 휌 푁 훥 1.9 훼 푘 푐 훼�� 푘 휔 훼�� 푘 ‘Core model’ ( ): [ ] adjust to reproduce hadronic 1.8 quark core w/o pion cloud 퐺푒푉 consistent푐 response in masses, 1.7 decay constants, charge radii ⇒ 1.6 0.5 Deep IR: 푀� confinement 1.5 15 2 ² [ ²] IR enhancement: ( ) 0.4 DCSB, mass generation, 1.4 10 hadron(variation physics of ) 푘 0.3 UV: perturbation theory, free훼 quarks and gluons 1.3 5 ( 2 ) 0.2 ln / 휔 휋훾� 푒푓푓 푘 훼 푘� 훬� �� 0 0.1 1.2 0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0 푀� [ ] [ ] 1.1 1.2 0.22 푘� 퐺푒푉� [ ݉] ࡜ ܩܸ݁ 1.0 0.8 0.18 ݂࡜ ܩܸ݁ 0.9 0.4 푐 0.8 0.14 푚� 0.0 0.7 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.1 0.2 0.3 0.4 0.5 [ ] [ ] [ ] 푚�� 퐺푒푉� Gernot Eichmann (TU Darmstadt) MENU 2010 푚�� 18.퐺푒푉 3.� 2010 9 / 15 Faddeev equation in rainbow-ladder: any pair of 2 quarks bound by gluon ladder exchange ݌Ҡ = ݌Ҡ + + ݌ҟ ݌ ݇ ݌ҟ ݇ ݇ ݌Ҟ ݍ ݌Ҟ Nucleon amplitude: 64 ( , , ) = ( , , , , ) ( , , ) = 1 64 Dirac covariants 훹 푝 푞 푃 � 푓� 푝� 푞� 푝⋅푞 푝⋅푃 푞⋅푃 휏� 푝 푞 푃 푖 Dominant covariants ( quark model ) : ) → ) � ) ↑ ↓ ↓ ↑ ) ↑ 2 푆�� � 훬₊(훾�퐶 훬₊ ~ (푈 푈 � 푈 푈 푈 � ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↓ 퐴�� � 훬₊(훾�퐶 훾�훾�훬₊ ~ (푈 푈 � 푈 푈 푈 � 푈 푈 푈 Gernot Eichmann (TU Darmstadt) MENU 2010 18.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us