Central Limit Theorem

Central Limit Theorem

Central Limit Theorem Example: the Gamma distribution Basic properties nu lambda nu-1 In[448]:= fgamma[x_, nu_, lambda_] := x Exp[-lambda x] Gamma[nu] In[449]:= plotOrig = Plot[fgamma[x, 3, 1], {x, 0, 7}, Frame → True, AxesStyle → {Directive[Black, 15], Directive[Black, 15]}, LabelStyle → Directive[Black, 18], ImageSize → 800, FrameStyle → {Thick, Directive[Thick]}, PlotStyle → Black] 0.25 0.20 0.15 Out[449]= 0.10 0.05 0.00 0 1 2 3 4 5 Normalization : 2 L3m.nb ∞ In[450]:= FullSimplify fgamma[x, nu, lambda] ⅆ x, 0 Assumptions → {nu > 0, Re[lambda] > 0} Out[450]= 1 Mean : ∞ In[451]:= mu = FullSimplify x fgamma[x, nu, lambda] ⅆ x, 0 Assumptions → {nu > 0, Re[lambda] > 0} nu Out[451]= lambda Variance : ∞ 2 2 In[452]:= sigma2 = FullSimplify x fgamma[x, nu, lambda] ⅆ x - mu , 0 Assumptions → {nu > 0, Re[lambda] > 0} nu Out[452]= lambda2 Skewness : In[453]:= gamma1 = FullSimplify 1 ∞ (x - mu)3 fgamma[x, nu, lambda] ⅆ x, 3/2 (sigma2) 0 Assumptions → {nu > 0, Re[lambda] > 0} 2 Out[453]= nu Kurtosis : L3m.nb 3 In[454]:= beta2 = FullSimplify 1 ∞ (x - mu)4 fgamma[x, nu, lambda] ⅆ x, 2 (sigma2) 0 Assumptions → {nu > 0, Re[lambda] > 0} 6 Out[454]= 3 + nu In[455]:= gamma2 = beta2 - 3 6 Out[455]= nu Central limit theorem As in lecture, let' s change variables to y = (x - mu) . Then characteristic function is : N sigma2 In[456]:= FullSimplify ∞ (x - mu) Expⅈ t fgamma[x, nu, lambda] ⅆ x, 0 N sigma2 Assumptions → Re[nu] > 0 && ((Im[t] + Re[lambda] ⩵ 0 && Re[nu] < 1) || Im[t] + Re[lambda] > 0) && t Im + Re[lambda] > 0 && lambda > 0 N nu lambda2 ⅈ -nu - nu t ⅈ t Out[456]= ⅇ N nu 1 - N nu 4 L3m.nb Characteristic function defined : -nu - ⅈ nu t ⅈ t In[457]:= phi[t_, nu_, N_] := ⅇ N nu 1 - N nu For our example let' s focus on nu = 1, the exponential distribution : In[470]:= plotOrig2 = Plot[fgamma[x, 1, 1], {x, 0, 5}, Frame → True, AxesStyle → {Directive[Black, 15], Directive[Black, 15]}, LabelStyle → Directive[Black, 18], ImageSize → 800, FrameStyle → {Thick, Directive[Thick]}, PlotStyle → Black] 1.0 0.8 0.6 Out[470]= 0.4 0.2 0.0 0 1 2 3 Now let' s determine the distribution of N s that satisfy L3m.nb 5 distribution of N i.i.d' s that satisfy the underlying Gamma distribution : (this integrates analytially to the exponential integral but we' ll evaluate numerically) 1 In[458]:= fN[y_, N_] := NIntegrate 2 π Exp[-ⅈ t y] (phi[t, 1, N])N, {t, -20, 20} Let' s evaluate this for increasing N and compare to the normal distribution : In[459]:= barfN1 = Table[{xx, Re[fN[xx - 1, 1]]}, {xx, -4, 4, .1}]; fN1plot = ListPlot[barfN1, PlotStyle → Red, Frame → True, Joined → True, PlotRange → {{-5, 5}, {-.1, 1.1}}]; barfN3 = Table[{xx, Re[fN[xx - 1, 3]]}, {xx, -4, 4, .1}]; fN3plot = ListPlot[barfN3, PlotStyle → Green, Frame → True, Joined → True]; barfN5 = Table[{xx, Re[fN[xx - 1, 10]]}, {xx, -4, 4, .1}]; fN5plot = ListPlot[barfN5, PlotStyle → Blue, Frame → True, Joined → True]; Here' s the normal distribution : 1 (xx - 1)2 In[465]:= fgauss[xx_] := Exp- 2 π 2 In[466]:= plotgauss = Plot[fgauss[xx], {xx, -5, 5}, PlotStyle → Black]; 6 L3m.nb In[471]:= Show[plotOrig2, fN1plot, fN3plot, fN5plot, plotgauss, PlotRange → {{-2, 5}, {-.1, 1.1}}, FrameLabel → {"y", "fN(y)"}, LabelStyle → Directive[Black, 25]] 1.0 0.8 0.6 ) y ( N f Out[471]= 0.4 0.2 0.0 -2 -1 0 1 2 3 y Example Basic properties 3 1 In[472]:= ftest[x_] := 2 (1 + Abs[x])4 L3m.nb 7 In[473]:= plotOrig = LogPlot[ftest[x], {x, -5, 5}, Frame → True, AxesStyle → {Directive[Black, 15], Directive[Black, 15]}, LabelStyle → Directive[Black, 18], ImageSize → 800, FrameStyle → {Thick, Directive[Thick]}, PlotStyle → Black] 1 0.500 0.100 0.050 Out[473]= 0.010 0.005 0.001 -4 -2 0 2 Normalization : ∞ In[532]:= ftest[x] ⅆ x -∞ Out[532]= 1 Mean : 8 L3m.nb ∞ In[475]:= mu = x ftest[x] ⅆ x -∞ Out[475]= 0 Variance : ∞ 2 In[476]:= sigma2 = x ftest[x] ⅆ x -∞ Out[476]= 1 Note that higher moments diverge! ∞ 3 In[477]:= x ftest[x] ⅆ x -∞ 3 x3 Integrate: Integral of does not converge on {-∞, ∞}. 2 (1 + Abs[x])4 ∞ 3 x3 Out[477]= ⅆx -∞ 2 (1 + Abs[x])4.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us