REGRESSION and INTERPOLATION Lec. 6.1: Introduction Example

REGRESSION and INTERPOLATION Lec. 6.1: Introduction Example

2/15/16 REGRESSION AND INTERPOLATION Lec. 6.1: Introduction Dr. Niket Kaisare Department of Chemical Engineering IIT–Madras NPTEL Course: MATLAB Programming for Numerical Computations — Week -6 Example: Regression • Given the following data: x 0.8 1.4 2.7 3.8 4.8 4.9 y 0.69 1.00 2.02 2.39 2.34 2.83 Regression: Obtain a straight line that best fits the data 1 2/15/16 Example: Interpolation • Given the following data: x 0.8 1.4 2.7 3.8 4.8 4.9 y 0.69 1.00 2.02 2.39 2.34 2.83 Interpolation: “Join the dots” and find a curve passing through the data. Regression vs. Interpolation • Given the following data: x 0.8 1.4 2.7 3.8 4.8 4.9 y 0.69 1.00 2.02 2.39 2.34 2.83 • In regression, we are interested in fitting a chosen function to data y = 0.45 + 0.47x • In interpolation, given finite amount of data, we are interested in obtaining new data-points within this range. At x = 2.0, y = 1.87 2 2/15/16 What Comes Next • This lecture (for demo): • Linear Regression: Fit a straight line to the given data • Newton’s Interpolation: For values at intermediate points • L–6.2: “Curve fitting” in multiple parameters & lsqcurvefit • L–6.3: “Parameter Estimation” (using these concepts) • L–6.4: Interpolation (using spline and pchip) Linear Least Squares • Fit a straight line ! = #$ + #&' to the data: x 0.8 1.4 2.7 3.8 4.8 4.9 y 0.69 1.00 2.02 2.39 2.34 2.83 • Parameters #$ and #& satisfy the following equations: (Computational Techniques, Module 5: http://nptel.ac.in/courses/103106074/15) # ( + # * ' = * ! ( * '+ * !+ $ & + + # + + + $ + # = , , & #$ * '+ + #& * '+ = * '+!+ * '+ * '+ * '+!+ + + + + + + 3 2/15/16 Newton’s Divided Difference Formula x y D D2 0.8 0.69 !, − !& -, − -& ', − '& ' − ' 1.4 1.00 / & !/ − !, -/ − -, 2.7 2.02 '/ − ', '0 − ', 3.8 2.39 ⋮ - − - 4.8 2.34 ⋮ 12& 12, !1 − !12& '1 − '12, 4.9 2.83 '1 − '12& End of Lecture 6.1 4 2/15/16 REGRESSION AND INTERPOLATION Lec. 6.2: Linear Least Squares Regression Dr. Niket Kaisare Department of Chemical Engineering IIT–Madras NPTEL Course: MATLAB Programming for Numerical Computations — Week -6 Linear Regression for Multiple Parameters • Data: '&,5&, 6&; !& , ',,5,, 6,; !, , ⋯ , '9 ,59 ,69 ; !9 • Model to fit: ! = #$ + #&' + #,5 + #/6 ⎡1 x1 u1 w1 ⎤⎡a0 ⎤ ⎡ y1 ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ 1 1 x2 u2 w2 a1 y2 T − T ⎢ ⎥⎢ ⎥ = ⎢ ⎥ Φ = X X X Y ⎢% % % % ⎥⎢a ⎥ ⎢ % ⎥ ( ) 2 Least Squares Solution ⎢1 x u w ⎥⎢a ⎥ ⎢y ⎥ $⎣ &&N&#N&&&N"⎦⎣!3 ⎦ $⎣ #N"⎦ X Φ Y (Computational Techniques: Module-5 Part-2: http://nptel.ac.in/courses/103106074/16) 5 2/15/16 Example x 0.8 1.4 2.7 3.8 4.8 4.9 y 0.69 1.00 2.02 2.39 2.34 2.83 Using MATLAB lsqcurvefit • Standard syntax: phi=lsqcurvefit(@(p,xData) fName(p,xData),p0,xData,yData); • phi parameter vector • p0 vector of initial guesses • xData, yData data arrays with ( rows • fName provides !:;<=> = ? '; Φ • lsqcurvefit minimizes the error between !<ABA and !:;<=> 6 2/15/16 End of Lecture 6.2 REGRESSION AND INTERPOLATION Lec. 6.3: Functional and Nonlinear Regression Dr. Niket Kaisare Department of Chemical Engineering IIT–Madras NPTEL Course: MATLAB Programming for Numerical Computations — Week -6 7 2/15/16 Example: Reaction Rate • Arrhenius model for reaction rate: 2F/HI 1 C = D$E J • We will solve it in two ways: 1. Linear least squares regression taking logarithm M 1 ln C = ln D + − + S ln J $ N P⏟ T R 2. Using MATLAB function lsqnonlin Parameter Estimation using Matrix Method (OLS) Reaction rate (in mol/(l.s)) for various C and T values 400 K 450 K 500 K 550 K 600 K 1 mol/l 1.48 1.67 1.86 1.96 2.16 2 mol/l 2.35 2.79 3.07 3.37 3.62 3 mol/l 3.28 3.78 4.24 4.48 5.00 4 mol/l 4.12 4.64 5.15 5.76 6.08 2F/HI 1 ! = # + # ' + # 5 C = D$E J log $ & , ln C ln D$ 1/P ln J 8 2/15/16 Using MATLAB lsqnonlin • Standard syntax: phi=lsqnonlin(@(p) fName(p),p0); • phi parameter vector • p0 vector of initial guesses • fName provides vector of errors, E+ = !+ − ? '+;Φ • lsqcurvefit minimizes sum of square errors End of Lecture 6.3 9 2/15/16 REGRESSION AND INTERPOLATION Lec. 6.4: Interpolation Options in MATLAB Dr. Niket Kaisare Department of Chemical Engineering IIT–Madras NPTEL Course: MATLAB Programming for Numerical Computations — Week -6 Interpolation in MATLAB • Most popular interpolation techniques: • spline Cubic spline interpolation • pchip Piecewise Cubic Hermite Polynomial • Syntax: yInterpolated = spline(xData,yData,xval); • xData,yData S×1 data vectors • yInterpolated values interpolated at xVal (can be vectors) 10 2/15/16 Example: Temperature variation in a day time 00 01 02 03 04 05 06 07 08 09 10 11 12 T 25.6 25.4 25.1 24.9 24.9 25.2 25.9 26.3 27.1 29.3 30.8 31.2 32.1 time 13 14 15 16 17 18 19 20 21 22 23 24 T 31.0 30.3 31.4 30.6 31.8 29.6 28.4 28.1 28.2 27.4 26.8 26.1 We are interested in finding temperature at various times during the day, in addition to the ones where data is available. We interpolate or “fill in” the missing data Example: Vehicle speed in front of Govt. Hospital time (s) 0 10 20 30 40 50 60 70 80 90 speed 45 32 0 0 7 12 20 15 29 55 11 2/15/16 End of Lecture 6.4 12.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us