ADDITIVE MAPS on RANK K BIVECTORS 1. Introduction. Let N 2 Be an Integer and Let F Be a Field. We Denote by M N(F) the Algeb

ADDITIVE MAPS on RANK K BIVECTORS 1. Introduction. Let N 2 Be an Integer and Let F Be a Field. We Denote by M N(F) the Algeb

<p>Electronic Journal of Linear Algebra, ISSN 1081-3810 publication of the International Linear Algebra Society Volume 36, pp.&nbsp;847-856, December 2020. A</p><p>ADDITIVE MAPS ON RANK K BIVECTORS<sup style="top: -0.3012em;">∗ </sup></p><p>WAI LEONG CHOOI<sup style="top: -0.2343em;">† </sup>AND KIAM HEONG KWA<sup style="top: -0.2343em;">† </sup></p><p>V</p><p>2</p><p>Abstract. Let U and V be linear spaces over fields F and K, respectively, such that dim U = n &gt; 2 and |F| &gt; 3. Let </p><p>UV</p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">n−1 </li></ul><p></p><p>be the second exterior power of U. Fixing an even integer k satisfying <br>6 k 6 n, it is shown that a map ψ : </p><p>U → </p><p>2</p><p>satisfies ψ(u + v) = ψ(u) + ψ(v) </p><p>V</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">for all rank k bivectors u, v&nbsp;∈ </li><li style="flex:1">U if and only if ψ is an additive map.&nbsp;Examples showing the indispensability of the assumption </li></ul><p>on k are given. </p><p>Key words. Additive maps, Second exterior powers, Bivectors, Ranks, Alternate matrices. </p><p>AMS subject classifications. 15A03, 15A04, 15A75, 15A86. </p><p>1. Introduction. Let n &gt; 2 be an integer and let F be a field.&nbsp;We denote by M<sub style="top: 0.1246em;">n</sub>(F) the algebra of n×n matrices over F. Given&nbsp;a nonempty subset S of M<sub style="top: 0.1245em;">n</sub>(F), a map ψ : M<sub style="top: 0.1245em;">n</sub>(F) → M<sub style="top: 0.1245em;">n</sub>(F) is called commuting on S (respectively, additive on S) if ψ(A)A = Aψ(A) for all A ∈ S (respectively, ψ(A + B) = ψ(A) + ψ(B) for all A, B&nbsp;∈ S). In 2012, using Breˇsar’s result [1, Theorem A], Franca [3] characterized commuting additive maps on invertible (respectively, singular) matrices of M<sub style="top: 0.1246em;">n</sub>(F). He&nbsp;continued to characterize commuting additive maps on rank k matrices of M<sub style="top: 0.1245em;">n</sub>(F) in [4], where 2 6 k 6 n is a fixed integer, and commuting additive maps on rank one matrices of M<sub style="top: 0.1245em;">n</sub>(F) in [5]. Later,&nbsp;Xu and Yi [8] improved the result of Franca [4] and showed that the same result holds when charF = 2 and charF = 3.&nbsp;Recently, Xu, Pei and Yi [7] initiated the study of additive maps on invertible matrices of M<sub style="top: 0.1246em;">n</sub>(F) and showed that the additivity of a map on M<sub style="top: 0.1246em;">n</sub>(F) can be determined by its invertible matrices.&nbsp;This work was continued by Xu and Liu [6] to study additive maps on rank k matrices M<sub style="top: 0.1245em;">n</sub>(F) with n/2 6 k 6 n. Motivated by these works, the authors studied additive maps </p><p>on rank k tensors and rank k symmetric tensors in [2], which have slightly improved the result of [6] and provided an affirmative answer for the case of symmetric matrices.&nbsp;In this note we continue our investigation to study additive maps on rank k bivectors of the second exterior powers of linear spaces. </p><p>We now introduce some notation to describe our main result precisely and to present some examples for showing the indispensability of the assumption on k in the result.&nbsp;Let U be a linear space over a field.&nbsp;We </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li><li style="flex:1">N</li><li style="flex:1">N</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">denote by </li><li style="flex:1">U the second exterior power of U, i.e., the quotient space </li><li style="flex:1">U := </li><li style="flex:1">U/Z, where </li><li style="flex:1">U is the </li></ul><p></p><p>N</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">tensor product of U with itself, and Z is the subspace of </li><li style="flex:1">U spanned by tensors of the form u ⊗ u. The </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">elements of </li><li style="flex:1">U are referred to as bivectors. Bivectors in </li><li style="flex:1">U of the form u<sub style="top: 0.1245em;">1 </sub>∧ u<sub style="top: 0.1245em;">2</sub>, for some u<sub style="top: 0.1245em;">1</sub>, u<sub style="top: 0.1245em;">2 </sub>∈ U, are </li></ul><p>called decomposable. Note&nbsp;that u<sub style="top: 0.1246em;">1 </sub>∧ u<sub style="top: 0.1246em;">2 </sub>= 0 if and only if u<sub style="top: 0.1246em;">1</sub>, u<sub style="top: 0.1246em;">2 </sub>are linearly independent in U. A&nbsp;bivector </p><p>V</p><p>2</p><p>u ∈ </p><p>U is said to be of rank 2r, denoted ρ(u) = 2r, provided that r is the least integer such that u can </p><p>V</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">be represented as a sum of r decomposable bivectors.&nbsp;It is a known fact that u ∈ </li><li style="flex:1">U is of rank 2r, with </li></ul><p></p><p><sup style="top: -0.2344em;">∗</sup>Received by the editors on August 5, 2019. Accepted for publication on July 20, 2020. Handling Editor: Bryan L. Shader. <br>Corresponding Author: Wai Leong Chooi. <br><sup style="top: -0.2344em;">†</sup>Institute of Mathematical Sciences,&nbsp;University of Malaya,&nbsp;Kuala Lumpur,&nbsp;Malaysia ([email protected], [email protected]). </p><p>Electronic Journal of Linear Algebra, ISSN 1081-3810 </p><ul style="display: flex;"><li style="flex:1">publication of the International Linear Algebra Society </li><li style="flex:1">A</li></ul><p>Volume 36, pp.&nbsp;847-856, December 2020. </p><p></p><ul style="display: flex;"><li style="flex:1">Wai Leong Chooi and Kiam Heong Kwa </li><li style="flex:1">848 </li></ul><p>r &gt; 1, if and only if </p><p>r</p><p>X</p><p>(1.1) </p><p>u = </p><p>u<sub style="top: 0.1245em;">2i−1 </sub>∧ u<sub style="top: 0.1245em;">2i </sub></p><p>i=1 </p><p>P</p><p>r</p><p>for some linearly independent vectors u<sub style="top: 0.1245em;">1</sub>, . . . , u<sub style="top: 0.1245em;">2r </sub>∈ U. If u has another representation u = <sub style="top: 0.2491em;">i=1 </sub>v<sub style="top: 0.1245em;">2i−1 </sub>∧ v<sub style="top: 0.1245em;">2i </sub>for some v<sub style="top: 0.1245em;">1</sub>, . . . , v<sub style="top: 0.1245em;">2r </sub>∈ U, then hu<sub style="top: 0.1245em;">1</sub>, . . . , u<sub style="top: 0.1245em;">2r</sub>i = hv<sub style="top: 0.1245em;">1</sub>, . . . , v<sub style="top: 0.1245em;">2r</sub>i. Here&nbsp;hu<sub style="top: 0.1245em;">1</sub>, . . . , u<sub style="top: 0.1245em;">2r</sub>i denotes the subspace of U spanned by u<sub style="top: 0.1245em;">1</sub>, . . . , u<sub style="top: 0.1245em;">2r</sub>. Evidently,&nbsp;ρ(u) = dim&nbsp;hu<sub style="top: 0.1245em;">1</sub>, . . . , u<sub style="top: 0.1245em;">2r</sub>i if u is of rank 2r of the form (1.1). In&nbsp;what </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">follows, R<sub style="top: 0.1246em;">k</sub>( U) denotes the totality of rank k bivectors in </li><li style="flex:1">U. We write it as R<sub style="top: 0.1246em;">k </sub>for brevity when it is </li></ul><p>clear from the context. </p><p>We can now state the main theorem. </p><p>n−1 </p><p></p><ul style="display: flex;"><li style="flex:1">Theorem 1.1. Let n &gt; 2 be an integer and let k be a fixed even integer such that </li><li style="flex:1">6 k 6 n. Let </li></ul><p>U and V be linear spaces over fields F and K, respectively, with dim U = n and |F| &gt;<sup style="top: -0.8096em;">2</sup>3. Then&nbsp;a map </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>ψ : </p><p>U → </p><p></p><ul style="display: flex;"><li style="flex:1">V satisfies ψ(u + v) = ψ(u) + ψ(v) for all rank k bivectors u, v ∈ </li><li style="flex:1">U if and only if ψ is an </li></ul><p>additive map. </p><p>Let A<sub style="top: 0.1245em;">n</sub>(F) denote the linear space of all n × n alternate matrices over a field F. In matrix language, we obtain the corresponding result for additive maps on rank k alternate matrices on A<sub style="top: 0.1245em;">n</sub>(F). </p><p>Corollary 1.2. Let F and K be fields with |F| &gt; 3. Let&nbsp;m and n be integers such that m, n&nbsp;&gt; 2 </p><p>n−1 </p><p>and let k be a fixed even integer such that <br>6 k 6 n. Then&nbsp;a map ψ : A<sub style="top: 0.1245em;">n</sub>(F) → A<sub style="top: 0.1245em;">m</sub>(K) satisfies </p><p>2</p><p>ψ(A + B) = ψ(A) + ψ(B) for all rank k matrices A, B&nbsp;∈ A<sub style="top: 0.1245em;">n</sub>(F) if and only if ψ is an additive map. </p><p>n−1 </p><p>We give some examples to highlight that the condition <br>6 k 6 n in Theorem 1.1 is indispensable. </p><p>2</p><p>Example 1.3. Let&nbsp;n &gt; 6 be an integer.&nbsp;Let U be an n-dimensional linear space and let V be a non-trivial </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>linear space. Given a fixed nonzero vector w ∈ V, we let ϕ : </p><p>U → </p><p>V be the map defined by </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p>n−2 <br>2</p><p></p><ul style="display: flex;"><li style="flex:1">Y</li><li style="flex:1">^</li></ul><p></p><p>ϕ(u) = </p><p></p><ul style="display: flex;"><li style="flex:1">ρ(u) − i w&nbsp;for all u ∈ </li><li style="flex:1">U. </li></ul><p></p><p>i=1 </p><p>V</p><p>2n−1 </p><p>Note that ϕ(u + v) = 0 = ϕ(u) + ϕ(v) for every even rank k bivectors u, v&nbsp;∈ <br>U with 1 6 k &lt; <br>.</p><p>2</p><p>V</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">Nevertheless, ϕ is not an additive map on </li><li style="flex:1">U. To see this, we select u<sub style="top: 0.1245em;">1 </sub>= b<sub style="top: 0.1245em;">1 </sub>∧ b<sub style="top: 0.1245em;">2 </sub>and </li></ul><p></p><p>(</p><p>b<sub style="top: 0.1245em;">3 </sub>∧ b<sub style="top: 0.1245em;">4 </sub>+ · · · + b<sub style="top: 0.1245em;">n−1 </sub>∧ b<sub style="top: 0.1245em;">n </sub></p><p>when n is even, </p><p>u<sub style="top: 0.1245em;">2 </sub>= </p><p>b<sub style="top: 0.1246em;">3 </sub>∧ b<sub style="top: 0.1246em;">4 </sub>+ · · · + b<sub style="top: 0.1246em;">n−2 </sub>∧ b<sub style="top: 0.1246em;">n−1 </sub>when n is odd, where {b<sub style="top: 0.1246em;">1</sub>, . . . , b<sub style="top: 0.1246em;">n</sub>} is a basis of U. Clearly, ϕ(u<sub style="top: 0.1246em;">1</sub>) = 0 = ϕ(u<sub style="top: 0.1246em;">2</sub>) and </p><p>(</p><p>(n − 1)! w when n is even, (n − 2)! w when n is odd. ϕ(u<sub style="top: 0.1246em;">1 </sub>+ u<sub style="top: 0.1246em;">2</sub>) = <br>Hence, ϕ(u<sub style="top: 0.1245em;">1 </sub>+ u<sub style="top: 0.1245em;">2</sub>) = ϕ(u<sub style="top: 0.1245em;">1</sub>) + ϕ(u<sub style="top: 0.1245em;">2</sub>). <br>Example 1.4. Let&nbsp;U be a 2-dimensional linear space over the Galois field of two elements and let V be </p><p>V</p><p>2</p><p>a non-trival linear space over a field of characteristic not two. Notice that </p><p>U = {0, b<sub style="top: 0.1246em;">1 </sub>∧ b<sub style="top: 0.1246em;">2</sub>} where {b<sub style="top: 0.1246em;">1</sub>, b<sub style="top: 0.1246em;">2</sub>} </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">is a basis of U. Let z be a fixed nonzero bivector in </li><li style="flex:1">V and let ϕ : </li></ul><p>if u = 0, </p><p>U → </p><p>V be the map defined by </p><p>(</p><p>z</p><p>ϕ(u) = <br>2</p><p><sup style="top: -0.3013em;">−1</sup>z if u = b<sub style="top: 0.1245em;">1 </sub>∧ b<sub style="top: 0.1245em;">2</sub>. </p><p>Electronic Journal of Linear Algebra, ISSN 1081-3810 </p><ul style="display: flex;"><li style="flex:1">publication of the International Linear Algebra Society </li><li style="flex:1">A</li></ul><p>Volume 36, pp.&nbsp;847-856, December 2020. </p><p></p><ul style="display: flex;"><li style="flex:1">849 </li><li style="flex:1">Additive Maps on Rank k Bivectors </li></ul><p>Clearly, ϕ is not additive since ϕ(0) = 0.&nbsp;However, ϕ(u + v) = z = ϕ(u) + ϕ(v) for every u, v ∈ R<sub style="top: 0.1245em;">2</sub>. <br>Example 1.5. Let F be a field and let n &gt; 6 be an integer.&nbsp;Let E ∈ A<sub style="top: 0.1245em;">n</sub>(F) be a fixed nonzero matrix and let ϕ<sub style="top: 0.1246em;">i </sub>: A<sub style="top: 0.1246em;">n</sub>(F) → A<sub style="top: 0.1246em;">n</sub>(F), i = 1, 2, 3, 4, be the maps defined by </p><p>ϕ<sub style="top: 0.1245em;">1</sub>(A) = adjA for all A ∈ A<sub style="top: 0.1245em;">n</sub>(F); </p><p>(</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">when A is singular, </li></ul><p></p><ul style="display: flex;"><li style="flex:1">ϕ<sub style="top: 0.1246em;">2</sub>(A) = </li><li style="flex:1">with n even; </li></ul><p></p><p>E</p><p>when A is invertible, </p><p>(</p><p>A</p><p>when A is of rank less than n − 1, when A is of rank n − 1, </p><p>tr(A)E when A is singular, </p><ul style="display: flex;"><li style="flex:1">ϕ<sub style="top: 0.1246em;">3</sub>(A) = </li><li style="flex:1">with n odd; </li></ul><p>0</p><p>(</p><p></p><ul style="display: flex;"><li style="flex:1">ϕ<sub style="top: 0.1246em;">4</sub>(A) = </li><li style="flex:1">with n even, </li></ul><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">when A is invertible, </li></ul><p>where adjA and tr(A) denote the classical adjoint of A and the trace of A, respectively. Note that no ϕ<sub style="top: 0.1245em;">i </sub>is an additive map on A<sub style="top: 0.1245em;">n</sub>(F), but ϕ<sub style="top: 0.1245em;">i</sub>(A + B) = ϕ<sub style="top: 0.1245em;">i</sub>(A) + ϕ<sub style="top: 0.1245em;">i</sub>(B) for all even rank k matrices A, B&nbsp;∈ A<sub style="top: 0.1245em;">n</sub>(F) with </p><p>n−1 </p><p>1 6 k &lt; </p><p>.</p><p>2</p><p>2. Results. We start with three lemmas. </p><p>Lemma 2.1. Let U and V be linear spaces over fields F and K, respectively, such that dim U = 2 with </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>|F| &gt; 3, or dim U = n &gt; 3. Let&nbsp;r be a fixed even integer with 2 6 r 6 n. If&nbsp;ψ : </p><p>U → </p><p>V is a map satisfying ψ(x + y) = ψ(x) + ψ(y) for every x, y ∈ R<sub style="top: 0.1245em;">r</sub>, then the following hold. </p><p>(i) ψ(0) = 0 and ψ(−u) = −ψ(u) for every u ∈ R<sub style="top: 0.1246em;">r</sub>. </p><p>(ii) ψ(u − v) = ψ(u) − ψ(v) for every u, v ∈ R<sub style="top: 0.1246em;">r</sub>. </p><p>V</p><p>2</p><p>(iii) Let u, v ∈ </p><p>U be such that u, u + v ∈ R<sub style="top: 0.1245em;">r</sub>. Then ψ(u + v) = ψ(u) + ψ(v). </p><p>Proof. (i) Let u ∈ R<sub style="top: 0.1245em;">r</sub>. We distinguish two cases. Case 1. charK = 2.&nbsp;We first claim that ψ(−u) = −ψ(u). If in addition, charF = 2, then ψ(−u) = ψ(u), and we have ψ(−u) = −ψ(u). Now&nbsp;consider the case charF = 2.&nbsp;Notice that ψ(2u) = ψ(u + u) = ψ(u)+ψ(u) = 0.&nbsp;Thus, −ψ(u) = ψ(u) = ψ(2u+(−u)) = ψ(2u)+ψ(−u) = ψ(−u) as claimed.&nbsp;For ψ(0) = 0, we note that ψ(0) = ψ(u) + ψ(−u) = ψ(u) − ψ(u) = 0. </p><p>Case 2. charK = 2.&nbsp;If in addition, charF = 2, we have ψ(u) = ψ(2u + (−u)) = ψ(2u) + ψ(−u) = <br>2ψ(u) + ψ(−u). Hence, ψ(−u) = −ψ(u). A similar argument as in the proof of Case 1 shows ψ(0) = 0.&nbsp;Now suppose that charF = 2.&nbsp;Then 2ψ(u) = ψ(u) + ψ(u) = ψ(u + u) = ψ(0), so ψ(u) = 2<sup style="top: -0.3012em;">−1</sup>ψ(0). Therefore ψ(v) = 2<sup style="top: -0.3012em;">−1</sup>ψ(0) for every v ∈ R<sub style="top: 0.1245em;">r</sub>. We next claim that there exist v<sub style="top: 0.1245em;">1</sub>, v<sub style="top: 0.1245em;">2 </sub>∈ R<sub style="top: 0.1245em;">r </sub>such that </p><p>(2.2) </p><p>v<sub style="top: 0.1246em;">1 </sub>+ v<sub style="top: 0.1246em;">2 </sub>∈ R<sub style="top: 0.1246em;">r</sub>. </p><p>Let {b<sub style="top: 0.1245em;">1</sub>, . . . , b<sub style="top: 0.1245em;">r</sub>, . . . , b<sub style="top: 0.1245em;">n</sub>} be a basis for U. When&nbsp;|F| &gt; 2, let v<sub style="top: 0.1245em;">1 </sub>= b<sub style="top: 0.1245em;">1 </sub>∧ b<sub style="top: 0.1245em;">2 </sub>+ · · · + b<sub style="top: 0.1245em;">r−1 </sub>∧ b<sub style="top: 0.1245em;">r </sub>and v<sub style="top: 0.1245em;">2 </sub>= λv<sub style="top: 0.1245em;">1 </sub>for some nonzero λ ∈ F with λ + 1 = 0.&nbsp;Clearly, v<sub style="top: 0.1245em;">1</sub>, v<sub style="top: 0.1245em;">2</sub>, v<sub style="top: 0.1245em;">1 </sub>+ v<sub style="top: 0.1245em;">2 </sub>∈ R<sub style="top: 0.1245em;">r </sub>as required. When |F| = 2, we have n &gt; 3. </p><p>Let </p><p>(</p><p>b<sub style="top: 0.1245em;">1 </sub>∧ b<sub style="top: 0.1245em;">2 </sub></p><p>b<sub style="top: 0.1245em;">1 </sub>∧ b<sub style="top: 0.1245em;">r </sub>+ b<sub style="top: 0.1245em;">2 </sub>∧ b<sub style="top: 0.1245em;">3 </sub>+ · · · + b<sub style="top: 0.1245em;">r−2 </sub>∧ b<sub style="top: 0.1245em;">r−1 </sub>when 2 &lt; r 6 n, </p><p>b<sub style="top: 0.1246em;">1 </sub>∧ b<sub style="top: 0.1246em;">3 </sub>when r = 2, b<sub style="top: 0.1245em;">1 </sub>∧ (b<sub style="top: 0.1245em;">2 </sub>+ b<sub style="top: 0.1245em;">r</sub>) + b<sub style="top: 0.1245em;">3 </sub>∧ b<sub style="top: 0.1245em;">4 </sub>+ · · · + b<sub style="top: 0.1245em;">r−1 </sub>∧ b<sub style="top: 0.1245em;">r </sub>when 2 &lt; r 6 n when r = 2, </p><p>v<sub style="top: 0.1246em;">1 </sub>= </p><p>(</p><p>v<sub style="top: 0.1246em;">2 </sub>= </p><p>Electronic Journal of Linear Algebra, ISSN 1081-3810 publication of the International Linear Algebra Society Volume 36, pp.&nbsp;847-856, December 2020. A</p><p></p><ul style="display: flex;"><li style="flex:1">Wai Leong Chooi and Kiam Heong Kwa </li><li style="flex:1">850 </li></ul><p></p><p>V</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">be two rank r bivectors in </li><li style="flex:1">U. Then </li></ul><p></p><p>(</p><p>b<sub style="top: 0.1245em;">1 </sub>∧ (b<sub style="top: 0.1245em;">2 </sub>+ b<sub style="top: 0.1245em;">3</sub>) </p><p>when r = 2, </p><p>v<sub style="top: 0.1245em;">1 </sub>+ v<sub style="top: 0.1245em;">2 </sub>= </p><p>b<sub style="top: 0.1246em;">1 </sub>∧ b<sub style="top: 0.1246em;">2 </sub>+ b<sub style="top: 0.1246em;">3 </sub>∧ (b<sub style="top: 0.1246em;">2 </sub>+ b<sub style="top: 0.1246em;">4</sub>) + · · · + b<sub style="top: 0.1246em;">r−1 </sub>∧ (b<sub style="top: 0.1246em;">r−2 </sub>+ b<sub style="top: 0.1246em;">r</sub>) when&nbsp;2 &lt; r 6 n. <br>Clearly, v<sub style="top: 0.1246em;">1 </sub>+v<sub style="top: 0.1246em;">2 </sub>∈ R<sub style="top: 0.1246em;">r </sub>as claimed.&nbsp;It follows from (2.2) that 2<sup style="top: -0.3012em;">−1</sup>ψ(0)+2<sup style="top: -0.3012em;">−1</sup>ψ(0) = ψ(v<sub style="top: 0.1246em;">1</sub>)+ψ(v<sub style="top: 0.1246em;">2</sub>) = ψ(v<sub style="top: 0.1246em;">1 </sub>+v<sub style="top: 0.1246em;">2</sub>) = </p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1"><sup style="top: -0.3012em;">−1</sup>ψ(0), so ψ(0) = 0.&nbsp;Hence, ψ(−u) = 0 = −ψ(u) for every u ∈ R<sub style="top: 0.1245em;">r</sub>. </li></ul><p>(ii) Let u, v ∈ R<sub style="top: 0.1246em;">r</sub>. Then ψ(u − v) = ψ(u) + ψ(−v) = ψ(u) − ψ(v) by (i). (iii) By (ii), ψ(u + v) − ψ(u) = ψ((u + v) − u) = ψ(v). Thus, ψ(u + v) = ψ(u) + ψ(v). Remark 2.2. Let U and V be linear spaces over fields F and K, respectively, with dim U = n. As&nbsp;an </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>immediate consequence of Lemma 2.1, we notice that when n = 2 with |F| &gt; 3, or n = 3, ψ : </p><p></p><ul style="display: flex;"><li style="flex:1">U → </li><li style="flex:1">V</li></ul><p></p><p>V</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">is additive if and only if ψ(u + v) = ψ(u) + ψ(v) for all rank two bivectors u, v ∈ </li><li style="flex:1">U. </li></ul><p>Let U be a linear space over a field F. Then u<sub style="top: 0.1245em;">1</sub>, . . . , u<sub style="top: 0.1245em;">k </sub>∈ U are linearly independent if and only if so are </p><p>k</p><p>X</p><p>(2.3) </p><p></p><ul style="display: flex;"><li style="flex:1">u<sub style="top: 0.1246em;">1</sub>, .&nbsp;. . , u<sub style="top: 0.1246em;">i </sub>+ </li><li style="flex:1">α<sub style="top: 0.1246em;">j</sub>u<sub style="top: 0.1246em;">j</sub>, .&nbsp;. . , u<sub style="top: 0.1246em;">k </sub></li></ul><p></p><p>j=1, j=i </p><p>for any 1 6 i 6 k and any scalars α<sub style="top: 0.1246em;">j </sub>∈ F, j = i. This fact will be frequently employed in our argument. </p><p>Lemma 2.3. Let n &gt; 4 be an even integer.&nbsp;Let U be an n-dimensional linear space over a field F with at least three elements.&nbsp;Then for each even integer 0 6 k 6 n and each u ∈ R<sub style="top: 0.1245em;">k </sub>and v ∈ R<sub style="top: 0.1245em;">2</sub>, there exists z ∈ R<sub style="top: 0.1246em;">n </sub>such that u + z, v − z ∈ R<sub style="top: 0.1246em;">n</sub>. </p><p>Proof. Let v = x ∧ y ∈ R<sub style="top: 0.1245em;">2 </sub>for some linearly independent vectors x, y&nbsp;∈ U. If&nbsp;k = 0, we take a basis </p><p>{x, y, b<sub style="top: 0.1245em;">3</sub>, . . . , b<sub style="top: 0.1245em;">n</sub>} for U and set </p><p>n/2 </p><p>X</p><p></p><ul style="display: flex;"><li style="flex:1">z<sub style="top: 0.1246em;">1 </sub>= x ∧ b<sub style="top: 0.1246em;">3 </sub>+ y ∧ b<sub style="top: 0.1246em;">4 </sub>+ </li><li style="flex:1">b<sub style="top: 0.1246em;">2i−1 </sub>∧ b<sub style="top: 0.1246em;">2i</sub>. </li></ul><p></p><p>i=3 </p><p>P</p><p>n/2 </p><p>i=3 </p><p>Then z<sub style="top: 0.1246em;">1 </sub>∈ R<sub style="top: 0.1246em;">n </sub>and z<sub style="top: 0.1246em;">1 </sub>− v = x ∧ (b<sub style="top: 0.1246em;">3 </sub>− y) + y ∧ b<sub style="top: 0.1246em;">4 </sub>+ </p><p>k/2 </p><p>b</p><p>∧ b<sub style="top: 0.1246em;">2i </sub>∈ R<sub style="top: 0.1246em;">n</sub>. </p><p>2i−1 </p><p>P</p><p>Suppose that 2 6 k 6 n. Let&nbsp;u = </p><p>u</p><p>∧u<sub style="top: 0.1246em;">2i </sub>∈ R<sub style="top: 0.1246em;">k </sub>for some linearly independent vectors u<sub style="top: 0.1246em;">1</sub>, . . . , u<sub style="top: 0.1246em;">k </sub></p><p>2i−1 i=1 </p><p>in U. Four cases are consided below. <br>Case I. {x, y, u<sub style="top: 0.1246em;">1</sub>, . . . , u<sub style="top: 0.1246em;">k</sub>} is linearly independent.&nbsp;Let {x, y, u<sub style="top: 0.1246em;">1</sub>, . . . , u<sub style="top: 0.1246em;">k</sub>, b<sub style="top: 0.1246em;">k+1</sub>, . . . , b<sub style="top: 0.1246em;">n−2</sub>} be a basis for U. <br>We set </p><p></p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">n</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><sub style="top: 0.2em;">2 </sub>−1 </li><li style="flex:1"><sub style="top: 0.2em;">2 </sub>−1 </li></ul><p></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us