
<p>Electronic Journal of Linear Algebra, ISSN 1081-3810 publication of the International Linear Algebra Society Volume 36, pp. 847-856, December 2020. A</p><p>ADDITIVE MAPS ON RANK K BIVECTORS<sup style="top: -0.3012em;">∗ </sup></p><p>WAI LEONG CHOOI<sup style="top: -0.2343em;">† </sup>AND KIAM HEONG KWA<sup style="top: -0.2343em;">† </sup></p><p>V</p><p>2</p><p>Abstract. Let U and V be linear spaces over fields F and K, respectively, such that dim U = n > 2 and |F| > 3. Let </p><p>UV</p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">n−1 </li></ul><p></p><p>be the second exterior power of U. Fixing an even integer k satisfying <br>6 k 6 n, it is shown that a map ψ : </p><p>U → </p><p>2</p><p>satisfies ψ(u + v) = ψ(u) + ψ(v) </p><p>V</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">for all rank k bivectors u, v ∈ </li><li style="flex:1">U if and only if ψ is an additive map. Examples showing the indispensability of the assumption </li></ul><p>on k are given. </p><p>Key words. Additive maps, Second exterior powers, Bivectors, Ranks, Alternate matrices. </p><p>AMS subject classifications. 15A03, 15A04, 15A75, 15A86. </p><p>1. Introduction. Let n > 2 be an integer and let F be a field. We denote by M<sub style="top: 0.1246em;">n</sub>(F) the algebra of n×n matrices over F. Given a nonempty subset S of M<sub style="top: 0.1245em;">n</sub>(F), a map ψ : M<sub style="top: 0.1245em;">n</sub>(F) → M<sub style="top: 0.1245em;">n</sub>(F) is called commuting on S (respectively, additive on S) if ψ(A)A = Aψ(A) for all A ∈ S (respectively, ψ(A + B) = ψ(A) + ψ(B) for all A, B ∈ S). In 2012, using Breˇsar’s result [1, Theorem A], Franca [3] characterized commuting additive maps on invertible (respectively, singular) matrices of M<sub style="top: 0.1246em;">n</sub>(F). He continued to characterize commuting additive maps on rank k matrices of M<sub style="top: 0.1245em;">n</sub>(F) in [4], where 2 6 k 6 n is a fixed integer, and commuting additive maps on rank one matrices of M<sub style="top: 0.1245em;">n</sub>(F) in [5]. Later, Xu and Yi [8] improved the result of Franca [4] and showed that the same result holds when charF = 2 and charF = 3. Recently, Xu, Pei and Yi [7] initiated the study of additive maps on invertible matrices of M<sub style="top: 0.1246em;">n</sub>(F) and showed that the additivity of a map on M<sub style="top: 0.1246em;">n</sub>(F) can be determined by its invertible matrices. This work was continued by Xu and Liu [6] to study additive maps on rank k matrices M<sub style="top: 0.1245em;">n</sub>(F) with n/2 6 k 6 n. Motivated by these works, the authors studied additive maps </p><p>on rank k tensors and rank k symmetric tensors in [2], which have slightly improved the result of [6] and provided an affirmative answer for the case of symmetric matrices. In this note we continue our investigation to study additive maps on rank k bivectors of the second exterior powers of linear spaces. </p><p>We now introduce some notation to describe our main result precisely and to present some examples for showing the indispensability of the assumption on k in the result. Let U be a linear space over a field. We </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li><li style="flex:1">N</li><li style="flex:1">N</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">denote by </li><li style="flex:1">U the second exterior power of U, i.e., the quotient space </li><li style="flex:1">U := </li><li style="flex:1">U/Z, where </li><li style="flex:1">U is the </li></ul><p></p><p>N</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">tensor product of U with itself, and Z is the subspace of </li><li style="flex:1">U spanned by tensors of the form u ⊗ u. The </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">elements of </li><li style="flex:1">U are referred to as bivectors. Bivectors in </li><li style="flex:1">U of the form u<sub style="top: 0.1245em;">1 </sub>∧ u<sub style="top: 0.1245em;">2</sub>, for some u<sub style="top: 0.1245em;">1</sub>, u<sub style="top: 0.1245em;">2 </sub>∈ U, are </li></ul><p>called decomposable. Note that u<sub style="top: 0.1246em;">1 </sub>∧ u<sub style="top: 0.1246em;">2 </sub>= 0 if and only if u<sub style="top: 0.1246em;">1</sub>, u<sub style="top: 0.1246em;">2 </sub>are linearly independent in U. A bivector </p><p>V</p><p>2</p><p>u ∈ </p><p>U is said to be of rank 2r, denoted ρ(u) = 2r, provided that r is the least integer such that u can </p><p>V</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">be represented as a sum of r decomposable bivectors. It is a known fact that u ∈ </li><li style="flex:1">U is of rank 2r, with </li></ul><p></p><p><sup style="top: -0.2344em;">∗</sup>Received by the editors on August 5, 2019. Accepted for publication on July 20, 2020. Handling Editor: Bryan L. Shader. <br>Corresponding Author: Wai Leong Chooi. <br><sup style="top: -0.2344em;">†</sup>Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malaysia ([email protected], [email protected]). </p><p>Electronic Journal of Linear Algebra, ISSN 1081-3810 </p><ul style="display: flex;"><li style="flex:1">publication of the International Linear Algebra Society </li><li style="flex:1">A</li></ul><p>Volume 36, pp. 847-856, December 2020. </p><p></p><ul style="display: flex;"><li style="flex:1">Wai Leong Chooi and Kiam Heong Kwa </li><li style="flex:1">848 </li></ul><p>r > 1, if and only if </p><p>r</p><p>X</p><p>(1.1) </p><p>u = </p><p>u<sub style="top: 0.1245em;">2i−1 </sub>∧ u<sub style="top: 0.1245em;">2i </sub></p><p>i=1 </p><p>P</p><p>r</p><p>for some linearly independent vectors u<sub style="top: 0.1245em;">1</sub>, . . . , u<sub style="top: 0.1245em;">2r </sub>∈ U. If u has another representation u = <sub style="top: 0.2491em;">i=1 </sub>v<sub style="top: 0.1245em;">2i−1 </sub>∧ v<sub style="top: 0.1245em;">2i </sub>for some v<sub style="top: 0.1245em;">1</sub>, . . . , v<sub style="top: 0.1245em;">2r </sub>∈ U, then hu<sub style="top: 0.1245em;">1</sub>, . . . , u<sub style="top: 0.1245em;">2r</sub>i = hv<sub style="top: 0.1245em;">1</sub>, . . . , v<sub style="top: 0.1245em;">2r</sub>i. Here hu<sub style="top: 0.1245em;">1</sub>, . . . , u<sub style="top: 0.1245em;">2r</sub>i denotes the subspace of U spanned by u<sub style="top: 0.1245em;">1</sub>, . . . , u<sub style="top: 0.1245em;">2r</sub>. Evidently, ρ(u) = dim hu<sub style="top: 0.1245em;">1</sub>, . . . , u<sub style="top: 0.1245em;">2r</sub>i if u is of rank 2r of the form (1.1). In what </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">follows, R<sub style="top: 0.1246em;">k</sub>( U) denotes the totality of rank k bivectors in </li><li style="flex:1">U. We write it as R<sub style="top: 0.1246em;">k </sub>for brevity when it is </li></ul><p>clear from the context. </p><p>We can now state the main theorem. </p><p>n−1 </p><p></p><ul style="display: flex;"><li style="flex:1">Theorem 1.1. Let n > 2 be an integer and let k be a fixed even integer such that </li><li style="flex:1">6 k 6 n. Let </li></ul><p>U and V be linear spaces over fields F and K, respectively, with dim U = n and |F| ><sup style="top: -0.8096em;">2</sup>3. Then a map </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>ψ : </p><p>U → </p><p></p><ul style="display: flex;"><li style="flex:1">V satisfies ψ(u + v) = ψ(u) + ψ(v) for all rank k bivectors u, v ∈ </li><li style="flex:1">U if and only if ψ is an </li></ul><p>additive map. </p><p>Let A<sub style="top: 0.1245em;">n</sub>(F) denote the linear space of all n × n alternate matrices over a field F. In matrix language, we obtain the corresponding result for additive maps on rank k alternate matrices on A<sub style="top: 0.1245em;">n</sub>(F). </p><p>Corollary 1.2. Let F and K be fields with |F| > 3. Let m and n be integers such that m, n > 2 </p><p>n−1 </p><p>and let k be a fixed even integer such that <br>6 k 6 n. Then a map ψ : A<sub style="top: 0.1245em;">n</sub>(F) → A<sub style="top: 0.1245em;">m</sub>(K) satisfies </p><p>2</p><p>ψ(A + B) = ψ(A) + ψ(B) for all rank k matrices A, B ∈ A<sub style="top: 0.1245em;">n</sub>(F) if and only if ψ is an additive map. </p><p>n−1 </p><p>We give some examples to highlight that the condition <br>6 k 6 n in Theorem 1.1 is indispensable. </p><p>2</p><p>Example 1.3. Let n > 6 be an integer. Let U be an n-dimensional linear space and let V be a non-trivial </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>linear space. Given a fixed nonzero vector w ∈ V, we let ϕ : </p><p>U → </p><p>V be the map defined by </p><p></p><ul style="display: flex;"><li style="flex:1"> </li><li style="flex:1">!</li></ul><p></p><p>n−2 <br>2</p><p></p><ul style="display: flex;"><li style="flex:1">Y</li><li style="flex:1">^</li></ul><p></p><p>ϕ(u) = </p><p></p><ul style="display: flex;"><li style="flex:1">ρ(u) − i w for all u ∈ </li><li style="flex:1">U. </li></ul><p></p><p>i=1 </p><p>V</p><p>2n−1 </p><p>Note that ϕ(u + v) = 0 = ϕ(u) + ϕ(v) for every even rank k bivectors u, v ∈ <br>U with 1 6 k < <br>.</p><p>2</p><p>V</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">Nevertheless, ϕ is not an additive map on </li><li style="flex:1">U. To see this, we select u<sub style="top: 0.1245em;">1 </sub>= b<sub style="top: 0.1245em;">1 </sub>∧ b<sub style="top: 0.1245em;">2 </sub>and </li></ul><p></p><p>(</p><p>b<sub style="top: 0.1245em;">3 </sub>∧ b<sub style="top: 0.1245em;">4 </sub>+ · · · + b<sub style="top: 0.1245em;">n−1 </sub>∧ b<sub style="top: 0.1245em;">n </sub></p><p>when n is even, </p><p>u<sub style="top: 0.1245em;">2 </sub>= </p><p>b<sub style="top: 0.1246em;">3 </sub>∧ b<sub style="top: 0.1246em;">4 </sub>+ · · · + b<sub style="top: 0.1246em;">n−2 </sub>∧ b<sub style="top: 0.1246em;">n−1 </sub>when n is odd, where {b<sub style="top: 0.1246em;">1</sub>, . . . , b<sub style="top: 0.1246em;">n</sub>} is a basis of U. Clearly, ϕ(u<sub style="top: 0.1246em;">1</sub>) = 0 = ϕ(u<sub style="top: 0.1246em;">2</sub>) and </p><p>(</p><p>(n − 1)! w when n is even, (n − 2)! w when n is odd. ϕ(u<sub style="top: 0.1246em;">1 </sub>+ u<sub style="top: 0.1246em;">2</sub>) = <br>Hence, ϕ(u<sub style="top: 0.1245em;">1 </sub>+ u<sub style="top: 0.1245em;">2</sub>) = ϕ(u<sub style="top: 0.1245em;">1</sub>) + ϕ(u<sub style="top: 0.1245em;">2</sub>). <br>Example 1.4. Let U be a 2-dimensional linear space over the Galois field of two elements and let V be </p><p>V</p><p>2</p><p>a non-trival linear space over a field of characteristic not two. Notice that </p><p>U = {0, b<sub style="top: 0.1246em;">1 </sub>∧ b<sub style="top: 0.1246em;">2</sub>} where {b<sub style="top: 0.1246em;">1</sub>, b<sub style="top: 0.1246em;">2</sub>} </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">is a basis of U. Let z be a fixed nonzero bivector in </li><li style="flex:1">V and let ϕ : </li></ul><p>if u = 0, </p><p>U → </p><p>V be the map defined by </p><p>(</p><p>z</p><p>ϕ(u) = <br>2</p><p><sup style="top: -0.3013em;">−1</sup>z if u = b<sub style="top: 0.1245em;">1 </sub>∧ b<sub style="top: 0.1245em;">2</sub>. </p><p>Electronic Journal of Linear Algebra, ISSN 1081-3810 </p><ul style="display: flex;"><li style="flex:1">publication of the International Linear Algebra Society </li><li style="flex:1">A</li></ul><p>Volume 36, pp. 847-856, December 2020. </p><p></p><ul style="display: flex;"><li style="flex:1">849 </li><li style="flex:1">Additive Maps on Rank k Bivectors </li></ul><p>Clearly, ϕ is not additive since ϕ(0) = 0. However, ϕ(u + v) = z = ϕ(u) + ϕ(v) for every u, v ∈ R<sub style="top: 0.1245em;">2</sub>. <br>Example 1.5. Let F be a field and let n > 6 be an integer. Let E ∈ A<sub style="top: 0.1245em;">n</sub>(F) be a fixed nonzero matrix and let ϕ<sub style="top: 0.1246em;">i </sub>: A<sub style="top: 0.1246em;">n</sub>(F) → A<sub style="top: 0.1246em;">n</sub>(F), i = 1, 2, 3, 4, be the maps defined by </p><p>ϕ<sub style="top: 0.1245em;">1</sub>(A) = adjA for all A ∈ A<sub style="top: 0.1245em;">n</sub>(F); </p><p>(</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">when A is singular, </li></ul><p></p><ul style="display: flex;"><li style="flex:1">ϕ<sub style="top: 0.1246em;">2</sub>(A) = </li><li style="flex:1">with n even; </li></ul><p></p><p>E</p><p>when A is invertible, </p><p>(</p><p>A</p><p>when A is of rank less than n − 1, when A is of rank n − 1, </p><p>tr(A)E when A is singular, </p><ul style="display: flex;"><li style="flex:1">ϕ<sub style="top: 0.1246em;">3</sub>(A) = </li><li style="flex:1">with n odd; </li></ul><p>0</p><p>(</p><p></p><ul style="display: flex;"><li style="flex:1">ϕ<sub style="top: 0.1246em;">4</sub>(A) = </li><li style="flex:1">with n even, </li></ul><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">when A is invertible, </li></ul><p>where adjA and tr(A) denote the classical adjoint of A and the trace of A, respectively. Note that no ϕ<sub style="top: 0.1245em;">i </sub>is an additive map on A<sub style="top: 0.1245em;">n</sub>(F), but ϕ<sub style="top: 0.1245em;">i</sub>(A + B) = ϕ<sub style="top: 0.1245em;">i</sub>(A) + ϕ<sub style="top: 0.1245em;">i</sub>(B) for all even rank k matrices A, B ∈ A<sub style="top: 0.1245em;">n</sub>(F) with </p><p>n−1 </p><p>1 6 k < </p><p>.</p><p>2</p><p>2. Results. We start with three lemmas. </p><p>Lemma 2.1. Let U and V be linear spaces over fields F and K, respectively, such that dim U = 2 with </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>|F| > 3, or dim U = n > 3. Let r be a fixed even integer with 2 6 r 6 n. If ψ : </p><p>U → </p><p>V is a map satisfying ψ(x + y) = ψ(x) + ψ(y) for every x, y ∈ R<sub style="top: 0.1245em;">r</sub>, then the following hold. </p><p>(i) ψ(0) = 0 and ψ(−u) = −ψ(u) for every u ∈ R<sub style="top: 0.1246em;">r</sub>. </p><p>(ii) ψ(u − v) = ψ(u) − ψ(v) for every u, v ∈ R<sub style="top: 0.1246em;">r</sub>. </p><p>V</p><p>2</p><p>(iii) Let u, v ∈ </p><p>U be such that u, u + v ∈ R<sub style="top: 0.1245em;">r</sub>. Then ψ(u + v) = ψ(u) + ψ(v). </p><p>Proof. (i) Let u ∈ R<sub style="top: 0.1245em;">r</sub>. We distinguish two cases. Case 1. charK = 2. We first claim that ψ(−u) = −ψ(u). If in addition, charF = 2, then ψ(−u) = ψ(u), and we have ψ(−u) = −ψ(u). Now consider the case charF = 2. Notice that ψ(2u) = ψ(u + u) = ψ(u)+ψ(u) = 0. Thus, −ψ(u) = ψ(u) = ψ(2u+(−u)) = ψ(2u)+ψ(−u) = ψ(−u) as claimed. For ψ(0) = 0, we note that ψ(0) = ψ(u) + ψ(−u) = ψ(u) − ψ(u) = 0. </p><p>Case 2. charK = 2. If in addition, charF = 2, we have ψ(u) = ψ(2u + (−u)) = ψ(2u) + ψ(−u) = <br>2ψ(u) + ψ(−u). Hence, ψ(−u) = −ψ(u). A similar argument as in the proof of Case 1 shows ψ(0) = 0. Now suppose that charF = 2. Then 2ψ(u) = ψ(u) + ψ(u) = ψ(u + u) = ψ(0), so ψ(u) = 2<sup style="top: -0.3012em;">−1</sup>ψ(0). Therefore ψ(v) = 2<sup style="top: -0.3012em;">−1</sup>ψ(0) for every v ∈ R<sub style="top: 0.1245em;">r</sub>. We next claim that there exist v<sub style="top: 0.1245em;">1</sub>, v<sub style="top: 0.1245em;">2 </sub>∈ R<sub style="top: 0.1245em;">r </sub>such that </p><p>(2.2) </p><p>v<sub style="top: 0.1246em;">1 </sub>+ v<sub style="top: 0.1246em;">2 </sub>∈ R<sub style="top: 0.1246em;">r</sub>. </p><p>Let {b<sub style="top: 0.1245em;">1</sub>, . . . , b<sub style="top: 0.1245em;">r</sub>, . . . , b<sub style="top: 0.1245em;">n</sub>} be a basis for U. When |F| > 2, let v<sub style="top: 0.1245em;">1 </sub>= b<sub style="top: 0.1245em;">1 </sub>∧ b<sub style="top: 0.1245em;">2 </sub>+ · · · + b<sub style="top: 0.1245em;">r−1 </sub>∧ b<sub style="top: 0.1245em;">r </sub>and v<sub style="top: 0.1245em;">2 </sub>= λv<sub style="top: 0.1245em;">1 </sub>for some nonzero λ ∈ F with λ + 1 = 0. Clearly, v<sub style="top: 0.1245em;">1</sub>, v<sub style="top: 0.1245em;">2</sub>, v<sub style="top: 0.1245em;">1 </sub>+ v<sub style="top: 0.1245em;">2 </sub>∈ R<sub style="top: 0.1245em;">r </sub>as required. When |F| = 2, we have n > 3. </p><p>Let </p><p>(</p><p>b<sub style="top: 0.1245em;">1 </sub>∧ b<sub style="top: 0.1245em;">2 </sub></p><p>b<sub style="top: 0.1245em;">1 </sub>∧ b<sub style="top: 0.1245em;">r </sub>+ b<sub style="top: 0.1245em;">2 </sub>∧ b<sub style="top: 0.1245em;">3 </sub>+ · · · + b<sub style="top: 0.1245em;">r−2 </sub>∧ b<sub style="top: 0.1245em;">r−1 </sub>when 2 < r 6 n, </p><p>b<sub style="top: 0.1246em;">1 </sub>∧ b<sub style="top: 0.1246em;">3 </sub>when r = 2, b<sub style="top: 0.1245em;">1 </sub>∧ (b<sub style="top: 0.1245em;">2 </sub>+ b<sub style="top: 0.1245em;">r</sub>) + b<sub style="top: 0.1245em;">3 </sub>∧ b<sub style="top: 0.1245em;">4 </sub>+ · · · + b<sub style="top: 0.1245em;">r−1 </sub>∧ b<sub style="top: 0.1245em;">r </sub>when 2 < r 6 n when r = 2, </p><p>v<sub style="top: 0.1246em;">1 </sub>= </p><p>(</p><p>v<sub style="top: 0.1246em;">2 </sub>= </p><p>Electronic Journal of Linear Algebra, ISSN 1081-3810 publication of the International Linear Algebra Society Volume 36, pp. 847-856, December 2020. A</p><p></p><ul style="display: flex;"><li style="flex:1">Wai Leong Chooi and Kiam Heong Kwa </li><li style="flex:1">850 </li></ul><p></p><p>V</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">be two rank r bivectors in </li><li style="flex:1">U. Then </li></ul><p></p><p>(</p><p>b<sub style="top: 0.1245em;">1 </sub>∧ (b<sub style="top: 0.1245em;">2 </sub>+ b<sub style="top: 0.1245em;">3</sub>) </p><p>when r = 2, </p><p>v<sub style="top: 0.1245em;">1 </sub>+ v<sub style="top: 0.1245em;">2 </sub>= </p><p>b<sub style="top: 0.1246em;">1 </sub>∧ b<sub style="top: 0.1246em;">2 </sub>+ b<sub style="top: 0.1246em;">3 </sub>∧ (b<sub style="top: 0.1246em;">2 </sub>+ b<sub style="top: 0.1246em;">4</sub>) + · · · + b<sub style="top: 0.1246em;">r−1 </sub>∧ (b<sub style="top: 0.1246em;">r−2 </sub>+ b<sub style="top: 0.1246em;">r</sub>) when 2 < r 6 n. <br>Clearly, v<sub style="top: 0.1246em;">1 </sub>+v<sub style="top: 0.1246em;">2 </sub>∈ R<sub style="top: 0.1246em;">r </sub>as claimed. It follows from (2.2) that 2<sup style="top: -0.3012em;">−1</sup>ψ(0)+2<sup style="top: -0.3012em;">−1</sup>ψ(0) = ψ(v<sub style="top: 0.1246em;">1</sub>)+ψ(v<sub style="top: 0.1246em;">2</sub>) = ψ(v<sub style="top: 0.1246em;">1 </sub>+v<sub style="top: 0.1246em;">2</sub>) = </p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1"><sup style="top: -0.3012em;">−1</sup>ψ(0), so ψ(0) = 0. Hence, ψ(−u) = 0 = −ψ(u) for every u ∈ R<sub style="top: 0.1245em;">r</sub>. </li></ul><p>(ii) Let u, v ∈ R<sub style="top: 0.1246em;">r</sub>. Then ψ(u − v) = ψ(u) + ψ(−v) = ψ(u) − ψ(v) by (i). (iii) By (ii), ψ(u + v) − ψ(u) = ψ((u + v) − u) = ψ(v). Thus, ψ(u + v) = ψ(u) + ψ(v). Remark 2.2. Let U and V be linear spaces over fields F and K, respectively, with dim U = n. As an </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>immediate consequence of Lemma 2.1, we notice that when n = 2 with |F| > 3, or n = 3, ψ : </p><p></p><ul style="display: flex;"><li style="flex:1">U → </li><li style="flex:1">V</li></ul><p></p><p>V</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">is additive if and only if ψ(u + v) = ψ(u) + ψ(v) for all rank two bivectors u, v ∈ </li><li style="flex:1">U. </li></ul><p>Let U be a linear space over a field F. Then u<sub style="top: 0.1245em;">1</sub>, . . . , u<sub style="top: 0.1245em;">k </sub>∈ U are linearly independent if and only if so are </p><p>k</p><p>X</p><p>(2.3) </p><p></p><ul style="display: flex;"><li style="flex:1">u<sub style="top: 0.1246em;">1</sub>, . . . , u<sub style="top: 0.1246em;">i </sub>+ </li><li style="flex:1">α<sub style="top: 0.1246em;">j</sub>u<sub style="top: 0.1246em;">j</sub>, . . . , u<sub style="top: 0.1246em;">k </sub></li></ul><p></p><p>j=1, j=i </p><p>for any 1 6 i 6 k and any scalars α<sub style="top: 0.1246em;">j </sub>∈ F, j = i. This fact will be frequently employed in our argument. </p><p>Lemma 2.3. Let n > 4 be an even integer. Let U be an n-dimensional linear space over a field F with at least three elements. Then for each even integer 0 6 k 6 n and each u ∈ R<sub style="top: 0.1245em;">k </sub>and v ∈ R<sub style="top: 0.1245em;">2</sub>, there exists z ∈ R<sub style="top: 0.1246em;">n </sub>such that u + z, v − z ∈ R<sub style="top: 0.1246em;">n</sub>. </p><p>Proof. Let v = x ∧ y ∈ R<sub style="top: 0.1245em;">2 </sub>for some linearly independent vectors x, y ∈ U. If k = 0, we take a basis </p><p>{x, y, b<sub style="top: 0.1245em;">3</sub>, . . . , b<sub style="top: 0.1245em;">n</sub>} for U and set </p><p>n/2 </p><p>X</p><p></p><ul style="display: flex;"><li style="flex:1">z<sub style="top: 0.1246em;">1 </sub>= x ∧ b<sub style="top: 0.1246em;">3 </sub>+ y ∧ b<sub style="top: 0.1246em;">4 </sub>+ </li><li style="flex:1">b<sub style="top: 0.1246em;">2i−1 </sub>∧ b<sub style="top: 0.1246em;">2i</sub>. </li></ul><p></p><p>i=3 </p><p>P</p><p>n/2 </p><p>i=3 </p><p>Then z<sub style="top: 0.1246em;">1 </sub>∈ R<sub style="top: 0.1246em;">n </sub>and z<sub style="top: 0.1246em;">1 </sub>− v = x ∧ (b<sub style="top: 0.1246em;">3 </sub>− y) + y ∧ b<sub style="top: 0.1246em;">4 </sub>+ </p><p>k/2 </p><p>b</p><p>∧ b<sub style="top: 0.1246em;">2i </sub>∈ R<sub style="top: 0.1246em;">n</sub>. </p><p>2i−1 </p><p>P</p><p>Suppose that 2 6 k 6 n. Let u = </p><p>u</p><p>∧u<sub style="top: 0.1246em;">2i </sub>∈ R<sub style="top: 0.1246em;">k </sub>for some linearly independent vectors u<sub style="top: 0.1246em;">1</sub>, . . . , u<sub style="top: 0.1246em;">k </sub></p><p>2i−1 i=1 </p><p>in U. Four cases are consided below. <br>Case I. {x, y, u<sub style="top: 0.1246em;">1</sub>, . . . , u<sub style="top: 0.1246em;">k</sub>} is linearly independent. Let {x, y, u<sub style="top: 0.1246em;">1</sub>, . . . , u<sub style="top: 0.1246em;">k</sub>, b<sub style="top: 0.1246em;">k+1</sub>, . . . , b<sub style="top: 0.1246em;">n−2</sub>} be a basis for U. <br>We set </p><p></p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">n</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><sub style="top: 0.2em;">2 </sub>−1 </li><li style="flex:1"><sub style="top: 0.2em;">2 </sub>−1 </li></ul><p></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages10 Page
-
File Size-