“Flux Attachment” in 2D Landau Levels

“Flux Attachment” in 2D Landau Levels

“Reduced Density Matrices in Quantum Physics and Role of Fermionic Exchange Symmetry” : workshop Pauli2016 on Oxford University, April 12-15 2016 Quantum Geometry, Exclusion Statistics, and the Geometry of “Flux Attachment” in 2D Landau levels F. Duncan M. Haldane Princeton University The degenerate partially-filled 2D Landau level is a remarkable environment in which kinetic energy is replaced by "quantum geometry” (or an uncertainty principle) that quantizes the space occupied by the electrons quite differently from the atomic-scale quantization by a periodic arrangement of atoms. In this arena, when the short-range part of the Coulomb interaction dominates, it can lead to “flux attachment”, where a particle (or cluster of particles) exclusively occupies a quantized region of space. This principle underlies both the incompressible fractional quantum Hall fluids and the composite-fermion Fermi liquid states that occur in such systems. Q: When is a “wavefunction” NOT a wavefunction? A: When it describes a “quantum geometry” • In this case space is “fuzzy”(non-commuting components of the coordinates), and the Schrödinger description in real space (i.e., in “classical geometry”) fails, though the Heisenberg description in Hilbert space survives • The closest description to the classical-geometry Schrödinger description is in a non-orthogonal overcomplete coherent- state basis of the quantum geometry. Risultato della ricerca immagini di Google per http://upload.wikimedia.org/wikiped... http://www.google.it/imgres?imgurl=http://upload.wikimedia.org/wikipedia/comm... Werner Karl Heisenberg Sito web per questa immagine Werner Karl Heisenberg Da Wikipedia, l'enciclopedia libera. it.wikipedia.org Werner Karl Heisenberg (Würzburg, 5 Dimensione intera dicembre 1901 – Monaco di Baviera, 1º febbraio 220 × 349 (Stesse dimensioni), 13KB 1976) è stato un fisico tedesco. Ottenne il Premio Altre dimensioni Nobel per la Fisica nel 1932 ed è considerato uno Ricerca tramite immagine dei fondatori della meccanica quantistica. Immagini simili Indice Tipo: JPG 1 Meccanica quantistica Le immagini potrebbero essere soggette a 2 Il lavoro durante la guerra copyright. 3 Bibliografia 3.1 Autobiografie 3.2 Opere in italiano 3.3 Articoli di stampa Erwin_schrodinger1.jpg (JPEG Image, 485 × 560 pixels) - Scaled (71%) http://www.camminandoscalzi.it/wordpress/wp-content/uploads/2010/09/Erwin_sc... 4 Curiosità 5 Voci correlate 6 Altri progetti 7 Collegamenti esterni Meccanica quantistica Werner Karl Heisenberg Schrödinger vs HeisenbergQuando era studente, incontrò per la fisica 1932 Gottinga nel 1922. Ciò permise lo sviluppo di una fruttuosa collaborazione tra i due. Heisenberg ebbe l'idea della , la prima formalizzazione della meccanica quantistica, nel principio di indeterminazione, introdotto nel 1927, afferma che la misura simultanea di due variabili coniugate, come posizione e quantità di moto oppure energia e tempo, non può essere compiuta senza un'incertezza ineliminabile. Assieme a Bohr, formulò l' della meccanica quantistica. Ricevette il Premio Nobel per la fisica "per la creazione della meccanica • Schrödinger’s picture describes thequantistica, system la cui applicazione, by tra le altre cose, ha portato alla scoperta delle forme a wavefunction ( ) in real spaceallotrope dell'idrogeno". � r Il lavoro durante la guerra Heisenberg’s picture describes the Lasystem fissione nucleare venneby scoperta a in Germania nel 1939. Heisenberg rimase in • Germania durante la seconda guerra mondiale, lavorando sotto il regime nazista. Guidò il state | in Hilbert space programma nucleare tedesco, ma i limiti della sua collaborazione sono controversi. �⟩ Rivelò l'esistenza del programma a Bohr durante un colloquio a Copenaghen nel settembre 1941. Dopo l'incontro, la lunga amicizia tra Bohr e Heisenberg terminò They are only equivalent if the basisbruscamente. r Bohr of si unì in seguito al progetto Manhattan. • Si è speculato sul fatto che Heisenberg avesse degli scrupoli morali e cercò di rallentare il progetto.| Heisenbergi stesso tentò di sostenere questa tesi. Il libro Heisenberg's War di states in real-space are orthogonal:Thomas Power e l'opera teatrale "Copenhagen" di Michael Frayn adottarono questa interpretazione. Nel febbraio 2002, emerse una letterathis scritta fails da Bohr ad Heisenberg nel 1957 (ma mai r r0 spedita)=0: vi si legge che Heisenberg, nella conversazione con Bohr del 1941, non espresse (r)= r requires alcun problema morale riguardo inal progetto a quantum di costruzione della bomba; si deduce inoltre h | iche Heisenberg aveva speso i precedenti due anni lavorandovi quasi esclusivamente, h | i (r =convintor0 )che la bomba avrebbe decisogeometry l'esito della guerra. 6 1 of 1 5/21/12 12:25 AM 1 of 1 5/21/12 12:27 AM Schrödinger vs Heisenberg and quantum geometry • Schrödinger’s real-space form of quantum mechanics postulates a local basis of simultaneous eigenstates |x⟩ of a commuting set of projection operators P(x), where P(x)P(x′) = 0 for x ≠ x′. ? (x)= x | i h | i Heisenberg = Schrödinger only equivalent if this fails in a x x0 =0for x = x0 quantum geometry h | i 6 • In “classical geometry” particles move from x to x’ because they have kinetic energy • In “quantum geometry”, they move because the states |x⟩ and |x’⟩ are not only non- orthogonal, but overcomplete: In this case the positive Hermitian operator S(x, x0)= x x0 has null eigenstates h | i S(x, x0) (x0)=0 Xx0 (so the basis cannot be reorthogonalized) • If the Schrödinger basis is on a lattice, so |x⟩ is normalizable 2 2 =0 x = x0 d(x, x0) =1 S(x, x0) x = x0 − | | =1 6 Hilbert-Schmidt distance (trivial distance measure) In this case kinetic energy (Hamiltonian hopping matrix elements) sews the lattice together • In a quantum geometry there is a non-trivial Hilbert-Schmidt distance between (coherent) states on different lattice sites, and the Hamiltonian appears “local” H = V (x) x x x x0 = δ(x, x0) | ih | h | i6 x X • Fractional quantum Hall effect in 2D electron gas in high magnetic field (filled Landau levels) 1/3 3 z 2/4`2 = (z z ) e−| i| B L i − j i<j i Y Y1 ⌫ = 3 • Laughlin (1983) found the wavefunction that correctly describes the 1/3 FQHE , and got Nobel prize, • Its known that it works, (tested by finite-size numerical diagonalization) but WHY it works has never really been satisfactorily explained! 0.9 laughlin 10/30 0.8 ތࠓ goes into continuum 0.7 0.6 (2 quasiparticle 0.5 bosonic “roton” E 0.5 + 2 quasiholes) 0.4 fermionic 0.3 “roton” “roton” 0.2 2 Moore-Read “kF ” ⌫ = 0.1 4 0 0 0 0.5 1 1.5 2 2.5 3 3.5 0 1 2k k lB gap incompressibility B Collective mode with short-range V1 Collective mode with short-range three-body pseudopotential, 1/3 filling (Laughlin state is pseudopotential, 1/2 filling (Moore-Read state is exact ground state in that case) exact ground state in that case) momentum ħk of a quasiparticle-quasihole pair is • b proportional to its electric dipole moment pe ~ka = abBpe gap for electric dipole excitations is a MUCH stronger condition than charge gap: doesn’t transmit pressure! fractional-charge, fractional statistics vortices 1 z⇤zi m 4`2 i = (z w ) (z z ) e− B i − ↵ i − j i,↵ i<j i Y Y Y Chiral edge states at edge of finite droplet of fluid (Halperin, Wen) charge -e/m statisticsθ time = π/m e.g., m=3 2iθ eiθ e • Non-commutative geometry of Landau-orbit guiding centers ~r displacement of electron from origin shape of orbit around guiding ~ displacement of guiding center from origin center is fixed by the cyclotron R effective mass tensor ~ displacement of electron relative to Rc guiding center of Landau orbit e− ~ Rc r~ = R~ + R~ c ⇥ ~r guiding [rx,ry]=0 ~ R center classical geometry x y 2 x y 2 O [R ,R ]= i` [Rc ,Rc ]=+i`B − B Landau orbit quantum geometry (harmonic oscillator) guiding centers commute with Landau radii [Ra,Rb]=0 (a, b x, y ) c 2{ } classical electron coordinate r~ = R~ + R~ c The one-particle Hilbert-space factorizes H = H¯ H GC ⌦ c space isomorphic space isomorphic to phase space in which to phase space in which the guiding-centers act the Landau orbit radii act [Rx,Ry]= i`2 [Rx,Ry]=+i`2 − B c c B • FQHE physics is *COMPLETELY* defined in the many-particle generalization (coproduct) of HGC Once H c is discarded, the Schrödinger picture is no longer valid! Previous hints that the Laughlin “wavefunction” should not be interpreted as a wavefunction: • Laughlin states also occur in the second Landau level, and in graphene, and more recently in simulations of “flat-band” Chern insulators These don’t fit into the original paradigm of the Galileian-invariant Landau level • First, translate Laughlin to the Heisenberg picture: 1 1 a† = z⇤ @ a¯† = z¯⇤ @z¯ 2 − z 2 − 1 z z¯ a = z + @z $ 1 2 ⇤ a¯ = 2 z¯ + @z¯⇤ Landau-level Guiding-center ladder operators ladder operators Gaussian lowest-weight state usual identification is 1 z⇤z 0(z,z⇤)=e− 2 z¯ = z⇤ a¯ 0(z,z⇤)=0 a 0(z,z⇤)=0 action of guiding-center raising operators on LLL states 1 1 a¯† = z @ a¯ = z + @ 2 − z⇤ 2 ⇤ z a¯†f(z) 0(z,z⇤)=zf(z) 0(z,z⇤) • Heisenberg form of Laughlin state (not “wavefunction”) a¯ ¯ =0 ai 0 =0 i| 0i | i 1/q q = (¯a† a¯†) ¯ ( ) | L i 0 i − j | 0i1 ⌦ | 0i i<j H H Y 2 c ⌘ H H¯ @ 2 GC ⌘ A Guiding-center Landau-orbit factor (keep) factor (discard) • At this point we discard the Landau-orbit Hilbert space. • The only “memory” of the shape of the Landau orbits is “hidden” in the definition of a¯ • guiding-center Coherent states (single particle) a¯(g) (0) =0 | g i za¯ †(g) z¯⇤a(g) (¯z) = e − (0) | g i | g i • This is a non-orthogonal overcomplete basis S(¯z,z¯0)= (¯z) (¯z0) h g | g i • non-zero

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    39 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us