The Bright Side of the Black Hole: Flares from Sgr A*

The Bright Side of the Black Hole: Flares from Sgr A*

The Bright Side of the Black Hole: Flares from Sgr A* Katie Dodds-Eden M¨unchen 2010 The Bright Side of the Black Hole: Flares from Sgr A* Katie Dodds-Eden Dissertation an der Fakult¨at f¨ur Physik der Ludwig–Maximilians–Universit¨at M¨unchen vorgelegt von Katie Dodds-Eden aus Canberra, Australia M¨unchen, den 28. September 2010 Erstgutachter: Prof. Dr. Reinhard Genzel Zweitgutachter: Prof. Dr. Andreas Burkert Tag der m¨undlichen Pr¨ufung: 13. December 2010 To the dear memory of my grandmother, Reta Dodds, my uncle, Ken Moyse, and my granddad, Francis Eden. vi Contents Zusammenfassung xv Summary xvii 1 Black Holes in Nature 1 1.1 ATheoreticalCuriosity. .. 1 1.1.1 Schwarzschild black holes . 1 1.1.2 Kerrblackholes............................. 2 1.2 TheSearchforRealBlackHoles. .. 3 1.3 RadiationfromAccretion . 4 2 The Massive Black Hole at the Galactic Center 9 2.0.1 SgrA*: theRadiotoSubmmSource . 10 2.0.2 Near-infraredand X-ray Flares fromSgr A* . ... 13 2.1 ModelsforSgrA*................................ 16 2.1.1 Thesubmm-radiosource . 16 2.1.2 FlareModels .............................. 16 3 Radiation Processes 19 3.1 SimpleRadiativeTransfer . .. 19 3.1.1 HomogeneousSphere . .. .. 20 3.2 SynchrotronEmission. 21 3.2.1 PropertiesoftheSpectrum. 22 3.3 InverseComptonScattering . .. 28 4 Multiwavelength Observations and the Emission Mechanism 31 4.1 Introduction................................... 32 4.2 Observations................................... 34 4.2.1 IR/NIRObservations. 35 4.2.2 X-rayObservations ........................... 38 4.2.3 Mid-InfraredObservations . 39 4.3 Results...................................... 41 4.3.1 Simultaneity of infrared and X-ray flare . .... 41 viii CONTENTS 4.3.2 GeneralLightcurveShape . 41 4.3.3 Substructure .............................. 42 4.3.4 Shortesttime-scalevariations . ... 42 4.3.5 PowerSpectra.............................. 42 4.3.6 SpectralEnergyDistribution. .. 43 4.4 ModellingtheflarestateSEDofSgrA* . .. 45 4.4.1 icmodel: inverse Compton scattered submm bump photons . 48 4.4.2 sscmodel: inverse Compton scattered NIR flare photons . 51 4.4.3 powerlaw: single power law synchrotron emission . 51 4.4.4 powerlawcool: power law synchrotron emission with cooling break 51 4.5 Flare Evolution: Lightcurve Shape and Substructure . ......... 52 4.6 Discussion.................................... 54 4.6.1 Why inverse Compton scenarios don’t work . .. 54 4.6.2 Comparison with past multiwavelength studies . ...... 56 4.6.3 The electron energy distribution . ... 58 4.6.4 Thejetmodel.............................. 61 4.6.5 Substructure in the context of an orbiting hot spot model...... 61 4.7 Conclusions ................................... 62 5 Time Dependent Flare Models 65 5.1 Introduction................................... 65 5.2 Flaring in Accretion Disk Simulations . ...... 67 5.2.1 Numerical Setup and Initial Conditions . .... 68 5.2.2 SimulationResults ........................... 68 5.3 LightcurveModeling .............................. 72 5.3.1 NumericalModel ............................ 73 5.3.2 Lightcurves ............................... 75 5.3.3 Quasi-stationaryFlareModel . 80 5.3.4 Expanding Plasma: a “Coronal Mass Ejection” . ... 80 5.3.5 Energetics and the Size of the Emitting Region . .... 86 5.3.6 Effect of the Decreasing Magnetic Field on the Steady State Emission 87 5.3.7 LightcurveSubstructure . 88 5.4 Conclusions ................................... 89 5.4.1 Conclusions:NIRandX-ray. 90 5.4.2 Conclusions: Millimeter and radio . ... 92 5.4.3 FinalRemarks ............................. 93 6 Six year lightcurve from Sgr A* 95 6.1 Introduction................................... 95 6.2 Data....................................... 97 6.2.1 Aperture Photometry of Ks-band data 2004-2009 . .... 101 6.2.2 PSFphotometryofKs-banddatafrom2009 . 105 6.3 Results...................................... 108 Inhaltsverzeichnis ix 6.3.1 FluxDistribution ............................ 108 6.3.2 Is Sgr A* really continuously variable? . .... 111 6.3.3 The Effect of Observation Errors on the Flux Distribution ..... 113 6.3.4 Long timescale variability ( weekstomonths). 114 ∼ 6.4 Discussion/Interpretation. ..... 115 6.4.1 TwostatesofSgrA*inthenear-infrared . 115 6.4.2 Consistency with previous measurements of Sgr A* at low Ks-band fluxes117 6.4.3 Comparison with X-ray binary variability . ..... 118 6.4.4 WavelengthDependence . 119 6.4.5 TimingAnalysis............................. 119 6.5 Conclusions ................................... 120 7 Conclusions 121 Acknowledgements 131 x Inhaltsverzeichnis List of Figures 1.1 LightcurveofCygnusX-1 . .. .. 6 2.1 Night view of the Galactic Center with the VLT Laser Guide Star ..... 10 2.2 The Galactic Center in the near-infrared . ...... 11 2.3 NIRFlaresfromSgrA* ............................ 13 3.1 Synchrotron spectrum emitted by monoenergetic distribution of electrons . 23 3.2 Synchrotron spectrum from a power-law electron distribution........ 24 3.3 Comparison of angle-averaged spectrum with φ = arcsin π/4 approximation 25 3.4 The self-absorption frequency for a power law distribution of electrons. 26 3.5 Comparison with analytic models. ... 27 3.6 Properties of Synchrotron Self-Compton spectra . ......... 28 3.7 The Klein-Nishina limit for inverse Compton scattering............ 29 4.1 SgrA*NIRlightcurve,April1-62007 . ... 36 4.2 SgrA*L’-bandflare,April4,2007 . .. 37 4.3 Simultaneous L’-band and X-ray flare, April 4, 2007. ........ 40 4.4 Power spectra for L’-band and X-ray lightcurves, April 4,2007....... 43 4.5 Spectral Energy Distribution for Sgr A*, April 4, 2007 . ......... 44 4.6 XSPECmodelsfortheApril4,2007flare. ... 49 4.7 Photon density in Yuan et al. 2003 model . ... 50 4.8 Best fit SEDs, power law distribution . .... 59 4.9 A submm inverse Compton model, for jet model . .... 61 5.1 2D MHD simulations: magnetic field contour plots . ....... 69 5.2 2D MHD simulations: temperature contour plots . ...... 71 5.3 X-rayandNIRmodellightcurves . .. 76 5.4 Time-dependent model SEDs . 77 5.5 X-ray and NIR model lightcurves with decreasing magneticfield ...... 81 5.6 An adiabatic expansion model: expansion and velocity profiles ....... 82 5.7 Adiabatic expansion models for radio-mm emission: varying Ri and vexp .. 83 5.8 Adiabatic expansion models for radio-mm emission: varying B(R) and p . 84 5.9 NIR lightcurve: substructures from magnetic field fluctuations ....... 89 5.10 SummarymodelforApril4,2007flare . ... 91 xii Abbildungsverzeichnis 6.1 2004-2009Ks-bandlightcurveofSgrA*. ..... 100 6.2 SgrA*Ks-bandflare: August5th,2008 . 103 6.3 SgrA*sourceposition,2007to2008 . 105 6.4 2009,Starfinderdetectedpositions . ..... 106 6.5 2009 lightcurves: Starfinder and Aperture Photometry . ......... 107 6.6 Flux distributions for Sgr A* and comparison star . ........ 110 6.7 Sgr A* flux distribution: non-continuously variable model.......... 112 6.8 Sgr A* flux distribution: comparison of Starfinder and Aperture Photometry 113 6.9 Sgr A* flux distribution: effect of observation errors . .......... 115 List of Tables 4.1 Models:FitParameters ............................ 47 4.2 Models:FitParameters ............................ 60 5.1 Properties of L’-band and X-ray flares in the time-dependent synchrotron model 79 6.1 Flux comparison of Sgr A* reported in the literature: I. brightstates . 98 6.2 Flux comparison of Sgr A* reported in the literature: II. faintstates. 99 6.3 Fits to the observed flux distribution . ..... 109 xiv Tabellenverzeichnis Zusammenfassung Sgr A*, die Strahlungsquelle, die dem schweren schwarzen Loch im Zentrum der Milch- straße entspricht, bietet uns die besondere M¨oglichkeit, Ph¨anomene in der unmittelbaren N¨ahe eines schwarzen Lochs zu beobachten. Da Sgr A* nur mit 10−8 seiner Eddington- Leuchtkraft strahlt, geh¨ort die Quelle zu den schw¨achsten bekannten strahlenden schwarzen L¨ochern (sogenannte Low Luminosity Active Galactic Nuclei, LLAGN). Sgr A* ist die am besten untersuchbare Quelle dieser Art, da sie vergleichsweise nah, n¨amlich in unserer eigenen Milchstraße lokalisiert ist. W¨ahrend das Vorhandensein eines schwarzen Lochs im Galaktischen Zentrum lange angezweifelt wurde, stellt die Beobachtung der Bewe- gung einzelner Sterne in Umlaufbahnen um Sgr A* heute den besten Beleg daf¨ur da, dass schwarze L¨ocher ¨uberhaupt existieren. Durch Beobachtung und Modellierung der langwelligen Emission von Sgr A* (Radio- bis submm-Bereich) ist bekannt, dass die relativ konstante Emission in diesen Wellenl¨angen- bereichen durch Synchrotron-Strahlung eines stark magnetisierten, d¨unnen, relativistis- chen Plasmas in einem mehrschichtigen, strahlungsineffizienten Akkretionsfluss erzeugt wird. Im inneren Bereich in der N¨ahe des schwarzen Lochs liegen die typische magnetis- che Flussdichte, die Dichte und der Gamma-Faktor des Plasmas bei etwa B 30 G, n 107 cm−3 und γ 10. Andererseits ist die physikalische Ursache f¨ur≈ die spo- e ≈ ≈ radischen Strahlungsausbr¨uche (Flares im folgenden), die etwa eine Stunde dauern und im Nahinfrarot- (NIR) und R¨ontgenbereich h¨aufig beobachtet werden, weiterhin ein un- gel¨ostes R¨atsel. Sie wurden erst in den letzten zehn Jahren entdeckt. Das Ziel dieser Arbeit ist es, den physikalischen Ursprung der Flares von Sgr A* zu untersuchen. Diese Arbeit beginnt mit drei einf¨uhrenden Kapiteln: Zun¨achst werden astrophysikalis- che schwarze L¨ocher im allgemeinen besprochen (Kapitel 1), danach die Beobachtungen von Sgr A* in Kapitel 2. In Kapitel 3 dann werden die Eigenschaften der wichtigsten Strahlungsprozesse f¨ur die Quelle, Synchrotron-Strahlung und inverse

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    149 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us