
Study of the aerodynamic and energetic impact of the solar panel’s installation on a commercial plane’s wing Content: Report Author: Nil Barcons Ventura Director: Santiago Bogarra Rodríguez Co-director: David Del Campo Sud Degree: Grau en Enginyeria en Vehicles Aeroespacials Release date: 10/1/2018 Announcement (convocatòria): 2017/2018 - 1 10/1/2018 Abstract The purpose of this study is to determine the feasibility of installing solar panels on a commercial aircraft. In order to achieve this objective, energetic and aerodynamic analysis have been developed to quantify the environmental and economic benefits of the installation. Several stages have been required before reaching the results. First of all, an exhaustive evaluation of the solar market has been carried out to select the photovoltaic technology that best suits the demands claimed by this installation. Then, the energetic analysis has been performed to determine the production capacity of the photovoltaic system on the aircraft. In addition, a reference flight has been established to compare the energy produced by the photovoltaic system contrasted with the energy needs of the plane. The aerodynamic analysis has examined the effects caused by the geometry alteration of the installation, guaranteeing that the energy gain eclipses the predictably small aerodynamic loss. Finally, all these results have been assembled to determine the economic and environmental impact of the installation. i 10/1/2018 Acknowledgements I am very thankful to my tutors and advisors, Prof. Santiago Bogarra Rodrigez and Prof. David Del Campo Sud, who have guided, supported and encouraged me during the development of this study. In addition, I must thank Mr. Oscar Aceves for his unconditional help when I was in need. The three of them have provided me with their extended knowledge in their respective professional areas of electrics, aerodynamics and photovoltaics. Whenever I doubted, they showed me the way and whenever I required some specific data, they gave me the key to find the information. I would also like to thank my family for their support. Without them I would be a lesser person. In addition, I am grateful to my cherished girlfriend, who is always giving me energies wherever she is to ensure I progress in every aspect of my life. Without her I couldn’t smile and feel alive. Finally, I greatly appreciate the good times with my friends, who have been the best method to unwind and relax from the work. They have channelled my energy recovery in every break I’ve made. So, to all of you and once again, thank you very much for your help. ii 10/1/2018 Table of contents List of figures……………………………………………………………………………………………………………….vii List of tables…………………………………………………………………………………………………………………x List of Abbreviations………………………………………………………………………………………………………xi List of Equations…………………………………………………………………………………………………………………….. xiii 1 Introduction………………………………………………………………………………………………………….….1 1.1 Population and degradation growths……………………………………………………………… 1 1.2 Commercial aviation evolution and emissions………………………………………………….2 1.3 PV systems on commercial aircrafts……………………………………………………………….. 3 2 What are solar panels? …………………………………………………………………………………………… 4 2.1 Functioning of solar cells……………………………………………………………………………….4 2.1.1 The photovoltaic effect………………………………………………………………………. 4 2.1.2 How does a solar cell generate an electrical field? …………………………………….4 2.2 Solar panel internal structure…………………………………………………………………………6 2.2.1 Layers list and description…………………………………………………………………… 6 2.3 Solar panel external structure…………………………………………………………………………8 2.4 Complementary elements………………………………………………………………………………9 2.5 Basic solar power concepts…………………………………………………………………………… 10 2.5.1 Air mass and solar spectrum…………………………………………………………………10 2.5.2 Solar irradiance and solar constant…………………………………………………………11 2.5.3 Solar insolation………………………………………………………………………………….11 2.5.4 Daylight hours……………………………………………………………………………………13 2.5.5 Temperature conditions………………………………………………………………………14 2.5.6 Standard Test Conditions……………………………………………………………………. 14 2.5.7 How much power does a solar panel produce?.…………………………………………15 3 State of the art of solar panels………………………………………………………………………………… 16 3.1 Evolution…………………………………………………………………………………………………….. 16 3.2 Solar markets………………………………………………………………………………………………. 17 3.2.1 Specialized market……………………………………………………………………………. 17 3.2.2 Mass market……………………………………………………………………………………. 17 iii 10/1/2018 3.3 Types of technologies…………………………………………………………………………………… 18 3.3.1 Junction Cells…………………………………………………………………………………… 20 3.3.2 Crystalline Silicon Cells………………………………………………………………………..21 3.3.3 Thin-Film technology…………………………………………………………………………. 22 3.3.4 Emerging PV……………………………………………………………………………………. 23 4 State of the art of sun-powered aircrafts………………………………………………………………… 24 4.1 Sun-powered aircrafts history…………………………………………………………………………24 4.1.1 Solar One………………………………………………………………………………………… 24 4.1.2 Gossamer Penguin and Solair 1……………………………………………………………. 24 4.1.3 Sunseeker………………………………………………………………………………………..25 4.1.4 Icaré II……………………………………………………………………………………………. 26 4.1.5 Helios………………………………………………………………………………………………26 4.2 Solar Impulse………………………………………………………………………………………………. 27 4.2.1 Solar Impulse 2 aerodynamics ………………………………………………………………27 4.2.2 Solar impulse 2 design features……………………………………………………………. 29 5 PV technology selection…………………………………………………………………………………………… 31 5.1 Solar panels dimensions……………………………………………………………………………….. 31 5.1.1 Mass market………………........................................................................ 32 5.2.2 Specialized market………………................................................................ 32 5.2 Characteristics evaluated in the selection………………………………………………………. 33 5.2.1 Essential characteristics……………………………………………………………………… 33 5.2.2 Variable characteristics………………………………………………………………………..34 5.2.3 Discarded technologies……………………………………………………………………….35 5.3 Selected technology and product……………………………………………………………………36 5.3.1 Maxeon Gen III specific characteristics……………………………………………………36 5.3.2 Operating features of Maxeon Gen III……………………………………………………. 38 5.3.3 Dimensions of Maxeon Gen III………………………………………………………………38 6 Airbus A320…………………………………………………………………………………………………………….. 39 6.1 A320 vs Solar Impulse 2………………………………………………………………………………. 40 6.1.1 Numerical comparison………………………………………………………………………..40 iv 10/1/2018 6.1.2 Chapter conclusions…………………………………………………………………………..…42 7 Adapting PV systems on A320…………………………………………………………………………………… 43 7.1 PV adaptation analysis on A320……………………………………………………………………… 43 7.2 Determining Maxeon Gen III panel design ………………………………………………….…… 45 7.2.1 Front sheet material selection……………………………………………………………… 45 7.2.2 Encapsulating material selection…………………………………………………………….. 48 7.2.3 Back sheet material selection………………………………………………………….………49 7.3 A320-PV assembly …………………………………………………………………………………….……49 8 Electric generation in A320…………………………………………………………………………………………51 8.1 APU……………………………………………………………………………………………………………… 51 8.1.1 Functions on the ground………………………………………………………………………. 51 8.1.2 Functions during take-off……………………………………………………………………… 52 8.1.3 Functions in flight……………………………………………………………………………..... 52 8.2 GPU……………………………………………………………………………………………………………… 53 8.3 CFM56………………………………………………………………………………………………………….. 53 8.3.1 Main features……………………………………………………………………………….…….53 8.3.2 Principle of functioning………………………………………………………………………… 54 8.4 Electromagnetic induction of the engine generators………………………………………….. 56 8.5 Electric system of A320……………………………………………………………………………………57. 9 Energetic consumption of A320………………………………………………………………………………… 59 9.1 Fuel consumption of A320………………………………………………………………………………. 59 9.1.1 Total fuel calculation…………………………………………………………………………….62 9.2 Total A320 energy consumption in the RF………………………………………………………….62 9.3 A320 electric consumption in the RF…………..…………………………………………………….63 10 MGIII energy generation on A320…….…………………………………………………………… 65 10.1 Factors affecting solar irradiance on a plane …………………………………………………… 65 10.1.1 Operating temperature………………………………………………………………………. 65 10.1.2 Air mass and weather……………………………………………………………….…………66 10.1.3 Latitude of the flight..………………………………………………………………………….66 10.2 Solar irradiance reaching A320 during the reference flight……………………………….. 70 v 10/1/2018 10.2.1 Cruise………………………………………………………………………………………………70 10.2.2 TR + taxi…………………………………………………………………………………………….73 10.2.3 Climb and descent……………………………………………………………………………. 74 10.3 Maxeon Gen III energy quantification……………………………………………………………. 74 10.3.1 TR + taxi………………………………………………………………………………………….75 10.3.2 Climb……………………………………………………………………………………………..76 10.3.3 Cruise……………………………………………………………………………………………. 76 10.3.4 Descent…………………………………………………………………………………………..7 7 10.4 Energetic contribution of 1 m2 of SP118 L ………………………………………………………77 11 Available A320 surface for Maxeon GIII …………………………………………………………………. 79 11.1 Wing available surface………………………………………………………………………………….79 11.2 Fuselage available surface……………………………………………………………………………. 83 11.2.1 Fuselage surface up to 30º…………………………………………………………………. 85 11.2.2 Fuselage surface up to 60º……………….………………………………………………… 86 11.3 Chapter conclusions..……………………………………………………………………………………87 12 PV installation impact on A320………………………………………………………………………………. 88 12.1 Aerodynamic impact…………………………………………………………………………………… 88 12.1.1 Reference airfoil profile ……………………………………………………………………..88 12.1.2 Simulation main characteristics…………………………………………………………… 90 12.1.3 Comparative aerodynamic results…………………………………………………………. 90 12.2 Energetic impact………………………………………………………………………………………….
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages123 Page
-
File Size-