Some Formulas for Bell Numbers

Some Formulas for Bell Numbers

Filomat 32:11 (2018), 3881–3889 Published by Faculty of Sciences and Mathematics, https://doi.org/10.2298/FIL1811881K University of Nis,ˇ Serbia Available at: http://www.pmf.ni.ac.rs/filomat Some Formulas for Bell Numbers Takao Komatsua, Claudio Pita-Ruizb aSchool of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China bUniversidad Panamericana, Facultad de Ingenier´ıa,Augusto Rodin 498, M´exico,Ciudad de M´exico,03920, M´exico Abstract. We give elementary proofs of three formulas involving Bell numbers, including a generalization of the Gould-Quaintance formula and a generalization of Spivey’s formula. We find variants for two of our formulas which involve some well-known sequences, among them the Fibonacci, Bernoulli and Euler numbers. 1. Introduction The n-th Bell number is given by Xn B(n) = S(n; j); (1) j=0 where S(n; j) denotes the Stirling number of the second kind which counts the partitions of an n-element set having exactly j blocks. Then B(n) counts the total number of partitions of an n-element set (see, e.g., [14, p. 33]). The Bell numbers B(n) may be defined by Dobinski’s´ formula X1 m 1 n B(n) = e− m! m=0 (see [3]), or by the generating function X1 n ex 1 x e − = B(n) n! n=0 (see [4]). A recurrence for the sequence B(n) is given by n ! X n B(n + 1) = B(j): (2) j j=0 2010 Mathematics Subject Classification. 11B73 Keywords. Bell numbers, Recurrence. Received: 19 October 2017; Accepted: 20 May 2018 Communicated by Paola Bonacini Email addresses: [email protected] (Takao Komatsu), [email protected] (Claudio Pita-Ruiz) T. Komatsu, C. Pita-Ruiz / Filomat 32:11 (2018), 3881–3889 3882 The inverse relation of (2) is n ! X n B(n) = ( 1)n+jB(j + 1): (3) j − j=0 In 2008, Spivey [13] proved the following generalized recurrence for Bell numbers Xk Xn ! n n j B (n + k) = m − S (k; m) B j ; (4) j m=0 j=0 which is called “Spivey’s formula” nowadays. When n = 0 in (4), this is reduced to the definition (1). When k = 1 in (4), this is reduced to the recurrence (2). Besides the generalizations of Bell numbers and their recurrences (see, e.g., [7] and [2, 8, 9]), we also have several generalizations of Spivey’s formula (4) (see, e.g., [1, 5, 10, 12, 15]). In this work, we give elementary proofs of the following three formulas involving Bell numbers: for arbitrary non-negative integers n and k, we have n ! k ! X n X k B(k + j) = ( 1)k+jB(n + j + 1); (5) j j − j=0 j=0 Xn ! Xk Xn ! n j n j k+j n l n l a b − B(j) = ( 1) s(k; j) a (b ak) − B(l + j); (6) j − l − j=0 j=0 l=0 Xn+k ! Xk Xn Xk Xj ! ! ! n + k n+k j j n k j n+l+i j k+j l i n j a − b B n + k j = a − b − − m − S (l; m) B (i) : (7) j − j l i j=0 m=0 j=0 l=0 i=0 In (6), s k; j denotes the unsigned Stirling numbers of the first kind whose recurrence is given by s(k + 1; j) = s(k; j 1) + ks(k; j). In (6) and (7), a and b are arbitrary complex numbers. Observe that− the case a = 1; b = 0 of (7) is Spivey’s formula (4). More particular cases in (5), (6) and (7) are discussed in the next section. 2. The Main Results In this section, we prove formulas (5), (6) and (7). Proposition 1. Formula (5) holds. Proof. We proceed by induction on k. By (2), the result is true for k = 0. Suppose that the result is true for a given k N. Then 2 k+1 ! X k + 1 ( 1)k+1+jB(n + j + 1) j − j=0 k ! k+1 ! X k X k = ( 1)k+1+jB(n + j + 1) + ( 1)k+1+jB(n + j + 1) j − j 1 − j=0 j=1 − k ! k ! X k X k = ( 1)k+1+jB(n + j + 1) + ( 1)k+jB(n + 1 + j + 1) j − j − j=0 j=0 T. Komatsu, C. Pita-Ruiz / Filomat 32:11 (2018), 3881–3889 3883 n ! n+1 ! X n X n + 1 = B(k + j) + B(k + j) − j j j=0 j=0 n+1 ! X n = B(k + j) j 1 j=1 − n ! X n = B(k + 1 + j); j j=0 as desired. When n = 0 in (5), we obtain the inverse relation (3). Formula (5) can be written as the following recurrence for Bell numbers: k 1 ! n ! X− k X n B(k + n + 1) = ( 1)k+1+jB(n + j + 1) + B(k + j): (8) j − j j=0 j=0 For example, the Bell number B(8) can be expressed in terms of B(1);:::; B(7), by taking k; n such that k + n = 7: n k B(8) = 6 1 B(1) + 6B(2) + 15B(3) + 20B(4) + 15B(5) + 6B(6) + 2B(7) 5 2 B(2) + 5B(3) + 10B(4) + 10B(5) + 4B(6) + 3B(7) 4 3 B(3) + 4B(4) + 7B(5) + B(6) + 4B(7) 3 4 7B(5) 3B(6) + 5B(7) − 2 5 B(3) 5B(4) + 11B(5) 8B(6) + 6B(7) − − 1 6 B(2) + 6B(3) 15B(4) + 20B(5) 14B(6) + 7B(7) − − − Proposition 2. Formula (6) holds. Proof. The proof is done by induction on k. If k = 0, formula (6) is trivial. If k = 1, then the result holds as n ! n j ! X X− n j n j n j i i a B(j + 1) − ( a) − − b j i − j=0 i=0 n n j ! ! X X− n n i n i j n i i = − ( 1) − − a − b B(j + 1) i n i j − j=0 i=0 − − n ! n i ! X X− n n i i n i n i j = a − b − ( 1) − − B(j + 1) i j − i=0 j=0 Xn ! n n i i = a − b B(n i); i − i=0 where we have used relation (3) in the last equality. Suppose formula (6) is true in the k-case for some k 1. Then ≥ k+1 n ! X X n n l ( 1)k+1+js(k + 1; j) al b a(k + 1) − B(l + j) − l − j=0 l=0 T. Komatsu, C. Pita-Ruiz / Filomat 32:11 (2018), 3881–3889 3884 Xk+1 Xn ! k+1+j n l n l = ( 1) s(k; j 1) + ks(k; j) a (b a ak) − B(l + j) − − l − − j=0 l=0 Xk Xn ! k+j n l n l = ( 1) s(k; j) a (b a ak) − B(l + j + 1) − l − − j=0 l=0 Xn ! n j n j k a (b a) − B(j): (9) − j − j=0 Now observe that Xk Xn ! k+j n l n l ( 1) s(k; j) a (b a ak) − B(l + j + 1) − l − − j=0 l=0 Xk Xn+1 ! ! k+j n + 1 n l 1 n+1 l = ( 1) s(k; j) ( )a − (b a ak) − B(l + j) − l − l − − j=0 l=0 Xn+1 ! Xn ! 1 n + 1 j n+1 j 1 n j n j = a− a (b a) − B(j) a− (b a ak) a (b a) − B(j) j − − − − j − j=0 j=0 Xn+1 ! Xn ! 1 n + 1 j n+1 j 1 n j n+1 j = a− a (b a) − B(j) a− a (b a) − B(j) j − − j − j=0 j=0 Xn ! n j n j + k a (b a) − B(j): j − j=0 Thus, from (9), we have k+1 n ! X X n n l ( 1)k+1+js(k + 1; j) al b a(k + 1) − B(l + j) − l − j=0 l=0 Xn+1 ! Xn ! 1 n + 1 j n+1 j 1 n j n+1 j = a− a (b a) − B(j) a− a (b a) − B(j) j − − j − j=0 j=0 Xn+1 ! 1 n j n+1 j = a− a (b a) − B(j) j 1 − j=1 − Xn ! n j n j = a (b a) − B(j + 1) j − j=0 Xn ! n j n j = a b − B(j): j j=0 as desired. Note that in the last step, we have used the k = 1 case of (6). When a , 0 and b = 0, (6) is Xk Xn ! k+j n n l B(n) = ( 1) s(k; j) ( k) − B(l + j): (10) − l − j=0 l=0 T. Komatsu, C. Pita-Ruiz / Filomat 32:11 (2018), 3881–3889 3885 This is the so-called “Gould-Quaintance Formula” in [5, (7)]. When a = 0 and b , 0 or n = 0 in (6), we have the identity Xk ( 1)k+js(k; j)B(j) = 1; − j=0 which is also derived from (1) by using the orthogonality of the two type of Stirling numbers. When a = 1 and b = k in (6), we have the formula Xn ! Xk n n j k+j k − B(j) = ( 1) s(k; j)B(n + j); (11) j − j=0 j=0 contained also in [5, (6)].

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us