The Laurel Forest An Example for Biodiversity Hotspots threatened by Human Impact and Global Change Dissertation 2014 Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto–Carola–University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Dipl. biol. Anja Betzin born in Kassel, Hessen, Germany Oral examination date: 2 The Laurel Forest An Example for Biodiversity Hotspots threatened by Human Impact and Global Change Referees: Prof. Dr. Marcus A. Koch Prof. Dr. Claudia Erbar 3 Eidesstattliche Erklärung Hiermit erkläre ich, dass ich die vorgelegte Dissertation selbst verfasst und mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe. Außerdem erkläre ich hiermit, dass ich an keiner anderen Stelle ein Prüfungsverfahren beantragt bzw. die Dissertation in dieser oder anderer Form bereits anderweitig als Prü- fungsarbeit verwendet oder einer anderen Fakultät als Dissertation vorgelegt habe. Heidelberg, den 23.01.2014 .............................................. Anja Betzin 4 Contents I. Summary 9 1. Abstract 10 2. Zusammenfassung 11 II. Introduction 12 3. Canary Islands and the Laurel Forest 13 4. Aims of this Study 20 5. Model Species: Laurus novocanariensis and Ixanthus viscosus 21 5.1. Laurus ...................................... 21 5.2. Ixanthus ..................................... 23 III. Material and Methods 24 6. Sampling 25 7. Laboratory Procedure 27 7.1. DNA Extraction . 27 7.2. AFLP Procedure . 27 7.3. Scoring . 29 7.4. High Resolution Melting . 30 8. Data Analysis 32 8.1. AFLP and HRM Data Analysis . 32 8.2. Hotspots — Diversity in Geographic Space . 34 8.3. Ecology — Ecological and Bioclimatic Analysis . 36 5 Contents IV. Results 38 9. AFLP Analyses for Both Model Species 39 9.1. Population Structure and Geographic Patterns . 39 10.Laurus: High Resolution Melting (HRM) Analysis 46 11.Hotspot Analysis 48 11.1. Diversity on Population Level . 48 11.2. Genetic Diversity on Individual Level . 53 12.Ecological Analysis 55 V. Discussion 61 13.Phylogeography and Biogeography 62 13.1. Intra-Island Population Structure on Tenerife . 62 13.2. Laurus Population Structure on the Western Canary Islands and Gene Flow on Tenerife and Between Islands . 65 14.Where is Diversity Highest? Localisation of Genetic Hotspots 68 15.Ecology Analysis 71 16.Future Threats and Conservation Opportunities — Diversity and Land Use Changes 74 17.Outlook 76 Bibliography 77 VI. Appendices 92 18.Appendix A — List of Plant Material 93 19.Appendix B — Supplementary Material 107 20.Appendix C — Supplementary Material on CD 111 21.Acknowledgements 112 6 List of Figures 6.1. Sampling for both species . 25 9.1. Genetic structure of Tenerife’s Laurus novocanariensis populations . 40 9.2. Genetic structure of Laurus on the Canary islands . 41 9.3. Principal Coordinate Analysis (PCoA) of AFLP data . 42 9.4. Genetic structure of Tenerife’s Ixanthus viscosus populations . 43 9.5. Neighbournet analysis of Ixanthus viscosus . 44 10.1. HRM (High Resolution Melting) of Laurus . 46 11.1. Population diversity . 49 11.2. Pairwise Fst and number of pairwise differences . 50 11.3. Maps of genetic hotspots . 54 12.1. PCoA of Bioclim parameters . 60 14.1. Geographic regions and Current Distribution of Laurel Forest . 69 15.1. Current species distribution . 71 19.1. Rotation diagram of Laurus principal coordinate analysis for bioclimatic parameters . 107 19.2. Bioclimatic values frequencies . 110 7 List of Tables 11.1. Analysis of Molecular Variance (AMOVA) of Laurus and Ixanthus based on population and georegion level . 51 11.2. Population analysis of Ixanthus ........................ 51 11.3. Populations analysis of Laurus ........................ 52 12.1. Ecological Analysis — Main Vegetation . 56 12.2. Ecological Analysis — Type Of Disturbance . 56 12.3. Ecological Analysis — Potential Natural Vegetation . 56 12.4. Bioclimatic values: Comparison of the descriptive statistics . 58 18.1. Accession List of Laurus ............................ 93 18.2. Accession List of Ixanthus . 103 8 Part I. Summary 9 1. Abstract The Canary Islands’ laurel forest is a montane evergreen forest formation of an out- standing floristic and biogeographic value. It is endemic to several islands of the Mac- aronesian biogeographic region, confined to the humid areas limited by the influence of the trade wind clouds. In recent times this relict forest vegetation, which once covered large proportions of the Canary Islands, suffered from a massive range reduction and fragmentation due to human exploitation. This thesis evaluates the phylogeography and population structure of the laurel for- est on the basis of two characteristic plant taxa representative for the whole vegetation complex: The widespread and dominant canopy-building tree species Laurus novoca- nariensis and the more constrictive Canary Island endemic Ixanthus viscosus. Analyses exhibit low levels of differentiation on within- as well as between-island level. Especially for Laurus the exchange between populations from different islands, even over longer dis- tances, is obvious. On island level the forest fragmentation has low impact on population divergence up to now. Furthermore, we localised the genetic hotspots of both model species within the lau- rel forest distribution range on Tenerife. A small-scale grid square sampling strategy combined with approaches from population and landscape genetics enabled the devel- opment of detailed maps showing the centres of genetic diversity and thus revealing the connection between forest fragmentation and diversity loss. Additionally, we analysed the ecological preferences of the two species, recognising not abiotic factors, but rather past forest degradation as having the most important impact on the current distribution range of the endemic Ixanthus. Based on these findings we discuss the necessity and opportunities for conservation strategies of the Canary Islands’ laurel forest in the future. 10 2. Zusammenfassung Der kanarische Lorbeerwald ist eine montane, immergrüne Waldgesellschaft von außer- gewöhnlichem floristischen und biogeographischen Wert. Er ist endemisch auf einigen Inseln der biogeographischen Region Makaronesien, wo er in den humiden, unter Einfluss der Passatwolken stehenden Gebieten existiert. In jüngerer Zeit erlitt diese Reliktveg- etation, die einst ausgedehnte Gebiete der Kanarischen Inseln bedeckte, bedingt durch menschliche Nutzung massive Gebietsverluste sowie -fragmentierung. Die vorliegende Arbeit untersucht Phylogeographie und Populationsstrukturen des Lorbeerwaldes anhand zweier charakteristischer Pflanzenarten, die repräsentativ für den gesamten Vegetationskomplex stehen: der weitverbreiteten und vorherrschenden, kro- nendachbildenden Baumart Laurus novocanariensis (Kanaren-Lorbeer) und dem weniger weit verbreiteten Kanarenendemiten Ixanthus viscosus (Kanaren-Enzian). Die Analysen zeigen ein geringes Niveau der Populationsdifferenzierung sowohl innerhalb als auch zwis- chen den Inseln. Besonders für Lorbeer ist der Austausch zwischen den Inselpopulationen auch auf größeren Distanzen offenbar. Innerhalb der Inseln scheint die Fragmentierung des Waldes bisher einen geringen Einfluss auf die Populationsdifferenzierung zu haben. Desweiteren lokalisierten wir die genetischen Hotspots beider Modellarten innerhalb des Lorbeerwaldgebietes auf Teneriffa. Eine kleinräumige, planquadratbasierte Sammel- strategie kombiniert mit populations- und landschaftsgenetischen Ansätzen ermöglichte die Entwicklung von detaillierten Karten, welche die Zentren der genetischen Vielfalt visualisieren. Diese verdeutlichen die Verbindung zwischen Waldfragmentierung und Diversitätsverlust. Zusätzlich haben wir die ökologischen Präferenzen der Modellarten analysiert und herausgefunden, dass nicht abiotische Faktoren, sondern die zurückliegende Degradation des Waldes am bedeutendsten für das aktuelle Verbreitungsareal des Endemiten Ixanthus ist. Basierend auf diesen Ergebnissen diskutieren wir abschließend die Notwendigkeit sowie die Möglichkeiten für den zukünftigen Schutz des kanarischen Lorbeerwaldes. 11 Part II. Introduction 12 3. Canary Islands and the Laurel Forest For many years the Canary Islands have been a Mecca-like destination for scientists of many disciplines, which was caused by the islands’ uniqueness, remarkable richness in flora and fauna, easy accessibility and model-system likeness. Since Alexander von Hum- boldt visited Tenerife in 1799 and recorded first findings about geological and botanical geography, biologists, geologists and geographers discovered the islands for their studies. Geologic History The Canary Islands archipelago is composed of seven main islands, which are — from west to east — El Hierro, La Palma, La Gomera, Tenerife, Gran Canaria, Fuerteventura and Lanzarote. The archipelago is situated in the Atlantic ocean off the northwest African coast of Morocco. Starting over 21 million years ago with the beginning of the oligocene, volcanic erup- tions formed an archipelago of subaerial, oceanic islands. Generated most likely by a mantle plume or a hot spot (Coello, 1992), island ages and erosion states decline from east to west. Island ages are proposed from 20 (Fuerteventura) to one million (El Hierro) years (Holik, 1991). Tenerife itself was formed out of the three preliminary, older islands Teno (7.4 Mio), Anaga (5.8 Mio), and Roque del Conde (11.6 Mio) less than two million years ago (Ancochea, 1990), which is reflected in common phylogeographic
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages112 Page
-
File Size-