The Mu3e Ultra-Low-Mass Tracker

The Mu3e Ultra-Low-Mass Tracker

The Mu3e ultra-low-mass tracker Frank Meier Universit¨at Heidelberg for the Mu3e collaboration 25 June 2018 1 / 52 Introduction to Mu3e Mu3e is an experiment to search for + + + µ e e−e ! A very rare decay. We're in an unusual regime, hence allow for some physics background. 2 / 52 Introduction to Mu3e µ eee in the standard model. ! e+ + W γ∗ e− + + µ ν¯µ ν¯e e 3 / 52 Introduction to Mu3e µ eee in the standard model. ! SM: < 1 10 54 × − The suppression comes from the + neutrino masses. e 12 Current best limit: < 1 10− + × W γ∗ (SINDRUM 1988) e− Alternative models predict BR within 16 reach of Mu3e (< 1 10− ). + + × µ ν¯µ ν¯e e 3 / 52 Introduction to Mu3e {{ Signal in rφ-view e– e+ e+ Signal SM: < 1 10 54 × − 4 / 52 Introduction to Mu3e {{ Signal in rφ-view e– e+ e+ Signal SM: < 1 10 54 × − P pi = 0 4 / 52 Introduction to Mu3e {{ Signal in rφ-view e– e+ e+ Signal SM: < 1 10 54 × − P pi = 0 minv = mµ 4 / 52 Introduction to Mu3e {{ Signal in rφ-view e– e+ e+ Signal SM: < 1 10 54 × − P pi = 0 minv = mµ t = t i; j i j 8 4 / 52 Introduction to Mu3e {{ Signal in rφ-view e– e+ e+ Signal SM: < 1 10 54 × − P pi = 0 minv = mµ t = t i; j i j 8 common vertex 4 / 52 Introduction to Mu3e {{ Signal in rφ-view e– ν e– e+ e+ ν + e+ e Signal Radiative decay SM: < 1 10 54 SM: 3:4 10 5 × − × − P p = 0 P p = 0 i i 6 minv = mµ minv < mµ t = t i; j t = t i j 8 i j common vertex common vertex 4 / 52 Introduction to Mu3e {{ Signal in rφ-view – e– ν e– e e+ e+ e+ ν + e+ e e+ Signal Radiative decay Accidental SM: < 1 10 54 SM: 3:4 10 5 background × − × − P p = 0 P p = 0 P p 0 i i 6 i ≈ m = mµ m < mµ m mµ inv inv inv ≈ t = t i; j t = t t t i j 8 i j i ≈ j common vertex common vertex \bad vertex" 4 / 52 bg = white Expected Sensitivity for µ eee in Phase I Introduction to Mu3e→ Mu3e Phase I 2 2 10 Full Geant4-based 1015 muon stops at 108 muons/s µ → eee detector simulation at 10-12 10 µ → eeeνν µ → eee at 10-13 Expected SM background 1 µ → eee -14 1 Bhabha + at 10 10− Events per 0.2 MeV/c Michel Prospects for µ eee µ → eee signal at various at 10-15 10−2 branching fractions→ 10−3 96 98 100 102 104 106 108 110 2 mrec [MeV/c ] 5 / 52 A. Perrevoort (PI HD) New Physics in Mu3e DPG 2017 4 / 14 Backgrounds Irreducible IntroductionBG: radiative to decay Mu3e with internal conversion (IC) - e ν e+ missing energy from two neutrinos R.M.DjilkiBaev, steeply falling! R.V.Konoplich ν e+ PRD79 (2009) B(μ+ → e+e+e- νν) = 3.4 ·10- 5 very good momentum / 6 / 52 total energy resolution required! André Schöning, Heidelberg (PI) 15 CERN Detector Seminar, March 31, 2017 What governs the detector design? Hence we need: I Precise tracking (vertexing and momentum) pixels ) I Good timing (coincidence, event separation) scintillators ) I Minimal material budget design (background suppression, multiple scattering) solutions. ) Note: Muons are stopped on a target. No bunch structure. Rad-hard electronics is not that important. 7 / 52 Mu3e detector concepts 8 / 52 Mu3e detector concepts Phase-I configuration: Recurl pixel layers Scintillator tiles Inner pixel layers μ Beam Target Outer pixel layers 9 / 52 Mu3e detector concepts Phase-I configuration: Recurl pixel layers Scintillator tiles Inner pixel layers μ Beam Target Outer pixel layers 8 I High rate: 10 muon stops on target per second I Time resolution (pixels): 20 ns I Vertex resolution: about 200 µm I Momentum resolution: about 0:5 MeV I All inside a cryogenic 1 T magnet, warm bore I.D. 1 m 9 / 52 Mu3e detector concepts Let's focus on the pixels. Monte-Carlo studies led to the following geometry: 100 Layer 4 Layer 3 Modules 50 Layer 2 of 4 ladders Layer 1 0 mm Target Target Half-shells –50 MuPix chips 4 or 5 ladders –100 –200 –100 0mm 100 200 (B = 1 T, x=X0 = 0:1% per layer) 10 / 52 Mu3e detector concepts Identical copies of layers 3/4 will extend the detector in z to extend coverage for recoiling tracks. 100 Layer 4 Layer 3 50 Layer 2 Layer 1 0 mm Target –50 MuPix chips –100 –200 –100 0 mm 100 200 11 / 52 Mu3e detector concepts Ok, we got the geometry. But what about the material budget of the pixel layers? Let's put this into perspective: Experiment Ref. x=X0 per layer [%] ATLAS IBL [1] 1.9 CMS Phase I [2] 1.1 ALICE upgrade [3] 0.3 STAR [4] 0.4 Belle-II IBL [5] 0.2 Mu3e 0.1 12 / 52 Mu3e detector concepts Coming back to the solutions I will talk about I Low-material mechanics based on polyimide film I Aluminium flexes to reduce Z I Interposers to save space I Stuffing all together to make it work 13 / 52 Mu3e Detektor in Rotationskäfig eingebaut Mu3e mechanics { Mounting structure Top view of experiment frame, diameter 1 m. ≈ 14 / 52 Mu3e mechanics { Mounting structure It needs to take the load: Deformation 100 exagerated. Matches measurements on a mock-up well. × 15 / 52 Pixel modules 16 / 52 Mu3e mechanics N-well E eld P-substrate Particle We use a monolithic, depleted pixel sensor, thinned to 50 µm. Active chip size 20 20 mm2, power dissipation 250 mW=cm2 (confirmed by measurements). × ≤ Ivan Peri´c,Nucl.Instrum.Meth. A582 (2007) 876-885 17 / 52 Mu3e mechanics Central station: Layer Unit units/layer ladders/unit chips/ladder #chips #links 1 half shell 2 half shell 3 module 4 module Total 18 / 52 Mu3e mechanics Central station: Layer Unit units/layer ladders/unit chips/ladder #chips #links 1 half shell 2 2 half shell 2 3 module 6 4 module 7 Total 18 / 52 Mu3e mechanics Central station: Layer Unit units/layer ladders/unit chips/ladder #chips #links 1 half shell 2 4 2 half shell 2 5 3 module 6 4 4 module 7 4 Total 18 / 52 Mu3e mechanics Central station: Layer Unit units/layer ladders/unit chips/ladder #chips #links 1 half shell 2 4 6 2 half shell 2 5 6 3 module 6 4 17 4 module 7 4 18 Total 18 / 52 Mu3e mechanics Central station: Layer Unit units/layer ladders/unit chips/ladder #chips #links 1 half shell 2 4 6 48 2 half shell 2 5 6 60 3 module 6 4 17 408 4 module 7 4 18 504 Total 1020 18 / 52 Mu3e mechanics Central station: Layer Unit units/layer ladders/unit chips/ladder #chips #links 1 half shell 2 4 6 48 144 2 half shell 2 5 6 60 180 3 module 6 4 17 408 408 4 module 7 4 18 504 504 Total 1020 1236 18 / 52 Mu3e mechanics Central station plus two recurl stations: Layer Unit units/layer ladders/unit chips/ladder #chips #links 1 half shell 2 4 6 48 144 2 half shell 2 5 6 60 180 3 module 6 4 17 1224 1224 4 module 7 4 18 1512 1512 Total 2844 3060 One chip dissipates about 1 W about 3 kW of heat. ) 18 / 52 Mu3e mechanics { Layers 1/2 Modules layer 2 design (1 is similar, one facet less) Inner modules have ladders of 6 chips each. Observe: No V-folds here. 19 / 52 Mu3e mechanics { Layers 1/2 Modules layer 2 design (1 is similar, one facet less) Exploded view of same part. 19 / 52 Mu3e mechanics { Layers 1/2 More on this: see poster by Simon Muley. 20 / 52 Mu3e mechanics Shown: One one module per layer inserted. 21 / 52 Mu3e mechanics 22 / 52 Mu3e mechanics 22 / 52 Mu3e mechanics Mupix sensor 50µm SpTAB bonds HDI ~100µm 4mm Mupix periphery polyimide 15µm 6mm Radiation length: 0:1% x=X ≈ 0 23 / 52 Mu3e mechanics { V fold gluing Let's have a look at gluing V-folds on ladders. This is the outcome: Polyimide Chip 50 µm HDI 0 10 20 mm 24 / 52 Mu3e mechanics { V fold gluing 1. Fill reservoir with 50 µm layer of glue 24 / 52 Mu3e mechanics { V fold gluing 2. Dip stamp into reservoir 24 / 52 Mu3e mechanics { V fold gluing 3. Place bare ladder on jig 24 / 52 Mu3e mechanics { V fold gluing 4. Apply glue 24 / 52 Mu3e mechanics { V fold gluing 5. Place V-folds on jig 24 / 52 Mu3e mechanics { V fold gluing 5. Place V-folds on jig 24 / 52 Mu3e mechanics { V fold gluing 6. Pick V-folds 24 / 52 Mu3e mechanics { V fold gluing 7. Lower V-folds down 24 / 52 Mu3e mechanics { V fold gluing 8. Place curing weight Let glue cure 24 / 52 Mu3e mechanics Setup for gluing 25 / 52 Mu3e mechanics Closeup view. Here, dispensing robot was used as an alternative approach. 26 / 52 Mu3e mechanics Mock-up ladders made of tape heaters Made of aluminium-polyimide laminate (25 µm thickness each), laser structured meander for heating and temperature measurement. 27 / 52 Mu3e mechanics Mock-up ladders made of tape heaters 27 / 52 Electrical connectivity 28 / 52 Electrical connectivity Interposer Samtec Z-Ray Pitch: 0:8 mm Model Compressed height ZA8H 0:3 mm ZA8 1 mm Industry standard component, cost 5{10 e a piece.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    184 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us