Advanced High-Frequency Measurement Techniques for Electrical and Biological Characterization in CMOS

Advanced High-Frequency Measurement Techniques for Electrical and Biological Characterization in CMOS

Advanced High-Frequency Measurement Techniques for Electrical and Biological Characterization in CMOS Jun-Chau Chien Ali Niknejad Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2017-9 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-9.html May 1, 2017 Copyright © 2017, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Advanced High-Frequency Measurement Techniques for Electrical and Biological Characterization in CMOS by Jun-Chau Chien A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Ali M. Niknejad, Chair Professor Jan M. Rabaey Professor Liwei Lin Spring 2015 Advanced High-Frequency Measurement Techniques for Electrical and Biological Characterization in CMOS Copyright © 2015 by Jun-Chau Chien 1 Abstract Advanced High-Frequency Measurement Techniques for Electrical and Biological Characterization in CMOS by Jun-Chau Chien Doctor of Philosophy in Electrical Engineering and Computer Science University of California, Berkeley Professor Ali M. Niknejad, Chair Precision measurements play crucial roles in science, biology, and engineering. In particular, current trends in high-frequency circuit and system designs put extraordinary demands on accurate device characterization and modeling. On the other hand, the need for better point-of-care requires substantial innovation in developing miniaturized sensors and medical devices that ease the biological analysis without sacrificing the accuracy. This research presents two advanced measurement techniques for electrical and biological characterization applications. In the first part, a novel single-element on-wafer VNA calibration algorithm is presented dedicated for device characterization at mm-Waves. Conventional calibration approaches such as thru-reflect-line (TRL) require at least three precisely-machined and well-characterized standards. The necessity of probe re-positioning leads to significant measurement errors due to mechanical uncertainty as the measurement frequency approaches sub-THz. By exploiting on-chip impedance modulation, such an electronic calibration (E-Cal) algorithm can work with single element without any prior knowledge of the impedance behavior. This CMOS-based approach opens a new direction in the field of VNA calibration. In the second part, the implementation of a dielectric spectroscopy biosensor aiming for single-cell analysis is presented. Most present day clinical flow cytometers use fluorescence-activated cell sorting (FACS), which requires bulky optical detection system as well as complex sample-labeling process, limiting the assay time and the wide-spread adoption in the point-of-care (POC) setting. To address these issues, this research presents the design and the implementation of a sensor-on-CMOS spectrometer that measures the microwave signature of single cell as a potentially label-free analytic tool. The sensor covers four frequency bands across 6.5 – 30 GHz, offering sub-aF noise sensitivity at 100-kHz bandwidth. Such performance is enabled with injection-locked oscillator sensors in interferometry architecture. With microfluidic integration, experiments on flow cytometry and molecular sensing are demonstrated. i To my parents and Yu-Ling ii TABLE OF CONTENTS Acknowledgments ........................................................................................................ iv Chapter 1 Introduction ........................................................................................................... 1 1.1 High-Frequency Measurements for Device Characterization ................................... 2 1.2 Dielectric Spectroscopy for Cellular and Molecular Sensing .................................... 2 1.3 Structure of the Dissertation ...................................................................................... 3 Chapter 2 Electronic Calibration in CMOS .......................................................................... 5 2.1 One-port Electronic Calibration ................................................................................ 5 2.2 Two-port Electronic Calibration ................................................................................ 6 2.2.1 Extrapolation ................................................................................................... 7 2.2.2 Impedance Sharing .......................................................................................... 10 2.2.3 Equation solving ............................................................................................. 10 2.2.4 Impedance renormalization ............................................................................. 11 2.2.5 Via Exclusion .................................................................................................. 13 2.3 Design Considerations ............................................................................................... 14 2.3.1 Error Amplification ......................................................................................... 15 2.3.2 Bandwidth Limitation ..................................................................................... 16 2.3.3 Implementation ............................................................................................... 16 2.4 Experimental Results ................................................................................................. 18 2.5 Two-element VNA Calibration ................................................................................. 23 2.5.1 Open Measurement in Two-element ECal ...................................................... 23 2.5.2 Solution Flow in Two-element ECal .............................................................. 26 2.5.3 Load Extraction in Two-element ECal ........................................................... 28 2.6 Single-element VNA Calibration .............................................................................. 28 2.6.1 Propagation Constant Extraction in Single-element ECal .............................. 29 2.6.2 Single-element ECal Implementation ............................................................. 31 2.7 Chapter Summary ...................................................................................................... 31 Chapter 3 Broadband Dielectric Spectroscopy for Chemical Mixture Detection ................. 34 3.1 Introduction to Broadband Dielectric Spectroscopy (BDS) ...................................... 34 3.2 Sensor Types .............................................................................................................. 38 3.2.1 Open-ended Coaxial Cables ............................................................................ 38 3.2.2 Planar Waveguides .......................................................................................... 39 3.2.3 Resonators ....................................................................................................... 39 3.2.4 Free-Space Measurements .............................................................................. 39 3.3 Instrumentation .......................................................................................................... 40 3.3.1 Frequency-domain Spectroscopy .................................................................... 40 3.3.2 Time-domain Spectroscopy ............................................................................ 40 3.3.3 Impedance Analyzer ....................................................................................... 40 3.4 Broadband Dielectric Sensor in CMOS ..................................................................... 43 3.4.1 Sensor and Reference Liquid Calibration ....................................................... 43 3.4.2 Receiver .......................................................................................................... 45 3.4.3 Experimental Results ...................................................................................... 48 iii 3.5 Chapter Summary ...................................................................................................... 52 Chapter 4 Injection-Locked Oscillator Sensors for Single-Cell Analysis .............................. 53 4.1 Signal Analysis and System Requirement ................................................................. 55 4.2 Sensor Architecture ................................................................................................... 59 4.2.1 Conventional Oscillator-based Sensor ............................................................ 59 4.2.2 Proposed Injection-locked Oscillator (ILO) Sensor ....................................... 61 4.2.3 Sensor Noise Analysis .................................................................................... 63 4.3 Circuit Implementation .............................................................................................. 67 4.3.1 System Architecture .......................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    136 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us