The Frobenius Number for Sequences of Binomial Coefficients

The Frobenius Number for Sequences of Binomial Coefficients

The Frobenius number for sequences of binomial coefficients Aureliano M. Robles-Perez´ Universidad de Granada A talk based on a joint work with Jose´ Carlos Rosales (J. Number Theory 186 (2018) 473–492.) INdAM meeting: International meeting on numerical semigroups - Cortona 2018 3-7th September 2018 A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 1 / 29 Frobenius coin problem I Given relatively prime positive integers a1;:::;an, n ≥ 2, find a formula to compute the largest integer that is not representable as a non-negative integer linear combination of a1;:::;an. I F(a1;:::;an) (the Frobenius number of the set fa1;:::;ang) denotes the solution of the previous problem. I F(a1;a2) = a1a2 − a1 − a2: I Frobenius problem is open for n ≥ 3. ∗ Curtis: it is impossible to find a polynomial formula that computes the Frobenius number if n = 3. ∗ Ram´ırez Alfons´ın: the problem is NP-hard for n variables. A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 2 / 29 Particular cases I Arithmetic and almost arithmetic sequences (A. Brauer; M. Lewin; J. B. Roberts; E. S. Selmer), I Fibonacci sequences (J. M. Mar´ın, J. L. Ram´ırez Alfons´ın and M. P. Revuelta), I geometric sequences (D. C. Ong and V. Ponomarenko), I Mersenne, repunit, and Thabit sequences (J. C. Rosales, M. B. Branco, D. Torrao),˜ I squares and cubes sequences (M. Lepilov, J. O’Rourke and I. Swanson; A. Moscariello), I ... A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 3 / 29 Particular cases: motivations (i) I Brauer: n − 2 F(n;n + 1;:::;n + k − 1) = + 1 n − 1: k − 1 I Baker (conjecture): If Tn is the nth triangular (or triangle) number, then 8 3 2 > 6n +18n +12n−8 if n is even; <> 8 F(Tn;Tn+1;Tn+2) = :> 6n3+12n2−6n−20 8 if n is odd. Equivalently, 6n3 + 3(5 + (−1)n)n2 + 3(1 + 3(−1)n)n − (14 − 6(−1)n) F(Tn;T + ;T + ) = : n 1 n 2 8 A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 4 / 29 Particular cases: motivations (ii) I Sequences of binomial coefficients (or combinatorial numbers). nn n+1 n+k−1o ∗ fn;n + 1;:::;n + k − 1g = 1 ; 1 ;:::; 1 nn+1 n+2 n+3o ∗ Tn;Tn+1;Tn+2 = 2 ; 2 ; 2 T1 = 1 T2 = 3 T3 = 6 T4 = 10 T5 = 15 T6 = 21 Figure: First six triangular numbers. A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 5 / 29 Purposes I Prove the Baker’s conjecture. I Find formulas for other binomial coefficients sequences. n+2 ∗ Tetrahedral (or triangular pyramidal) numbers: THn = 3 . Figure: Tetrahedral number TH5 (by layers). ∗ Pentatope (or 4-Hypertetrahedral or 4-dimensional triangular n+3 pyramidal) numbers: Pn = 4 . A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 6 / 29 Tools (i) I Johnson’s formula: if a1;a2;a3 are relatively prime numbers and gcdfa1;a2g = d, then a a F(a ;a ;a ) = d F 1 ; 2 ;a + (d − 1)a : 1 2 3 d d 3 3 I Generalization by Brauer and Shockley: if a1;:::;an are relatively prime numbers and d = gcdfa1;:::;an−1g, then a a − F(a ;:::;a ) = d F 1 ;:::; n 1 ;a + (d − 1)a : 1 n d d n n I Telescopic sequences. A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 7 / 29 Tools (ii) Definition I Let (a1;:::;an) be a sequence of positive integers such that gcdfa1;:::;ang = 1 (where n ≥ 2). I Let di = gcdfa1;:::;aig for i = 1;:::;n. I Then (a1;:::;an) is a telescopic sequence if, for each i = 2;:::;n, ai is representable as a non-negative integer linear combination di of a1 ;:::; ai−1 . di−1 di−1 Remark I If (a1;:::;an) is a telescopic sequence, then a a ∗ 1 ;:::; i is also a telescopic sequence for i = 2;:::;n − 1; di di a1 an−1 ∗ F(a1;:::;an) = dn−1 F ;:::; + (dn−1 − 1)an. dn−1 dn−1 A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 8 / 29 Examples Example: (8,14,19) I d1 = gcdf8g = 8; d2 = gcdf8;14g = 2; d3 = gcdf8;14;19g = 1. 14 8 19 8 14 I = 7 · ; = 3 · + 1 · . 2 8 1 2 2 I (8;14;19) is a telescopic sequence. I 8 14 F(8;14;19) = 2 · F 2 ; 2 + (2 − 1) · 19 = 2 · F(4;7) + 19 = 2 · 17 + 19 = 53: Example: (8,14,17) I d1 = gcdf8g = 8; d2 = gcdf8;14g = 2; d3 = gcdf8;14;17g = 1. 14 8 17 8 14 I = 7 · ; , α1 · + α2 · , for all α1;α 2 2 N = f0;1;2;:::g. 2 8 1 2 2 I (8;14;17) is not a telescopic sequence. I F(8;14;17) =? A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 9 / 29 Triangular numbers sequences ! n + 1 n(n + 1) T = = ; n ≥ 1: n 2 2 Lemma 8 n+1 <> 2 if n is odd; I gcdfTn;Tn+1g = :> n + 1 if n is even. Lemma I gcdfTn;Tn+1;Tn+2g = 1: Proof n o ∗ gcdfTn;Tn+1;Tn+2g = gcd gcdfTn;Tn+1g;gcdfTn+1;Tn+2g : A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 10 / 29 Triangular numbers sequences Proposition I (Tn;Tn+1;Tn+2) and (Tn+2;Tn+1;Tn) are telescopic sequences. Proof I Let n be an odd integer. I n(n+1) n+1 d1 = gcdfTng = 2 ; d2 = gcdfTn;Tn+1g = 2 ; d3 = gcdfTn;Tn+1;Tn+2g = 1. T T T I n+1 · Tn n+2 · Tn n+3 · n+1 n+1 =( n + 2) n(n+1) ; 1 = 0 n+1 + 2 n+1 . 2 2 2 2 I (Tn;Tn+1;Tn+2) is a telescopic sequence if n is odd. I The proofs for the other three cases are similar. A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 11 / 29 Triangular numbers sequences Proposition 8 3 2 > 3n +6n −3n−10 if n is odd; <> 4 I F(Tn;Tn+1;Tn+2) = :> 3n3+9n2+6n−4 4 if n is even. Proposition j k I n F(Tn;Tn+1;Tn+2) = 2 (Tn + Tn+1 + Tn+2 − 1) − 1. A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 12 / 29 Triangular numbers sequences: obstacles I Two consecutive triangular numbers are not relatively prime. I If n = 4 or n ≥ 6, then 0 ! ! ! !1 B n + 1 n + 2 n + 3 n + 4 C B ; ; ; C @B 2 2 2 2 AC is not a telescopic sequence (of four consecutive relatively prime triangular numbers). ∗ In fact, none of its permutations is telescopic. A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 13 / 29 Tetrahedral numbers sequences ! n + 2 n(n + 1)(n + 2) TH = = ; n ≥ 1: n 3 6 Lemma I gcdfTHn;THn+1;THn+2;THn+3g = 1: Proof ∗ (THn+1 − THn;THn+2 − THn+1;THn+3 − THn+2) = (Tn;Tn+1;Tn+2): ∗ Fact • Let (a1;a2;:::;an) be a sequence of positive integers. • Let d1 = gcdfa1;a2;:::;ang and d2 = gcdfa2 − a1;:::;an − an−1g. • Then d1jd2. In particular, if d2 = 1, then d1 = 1. A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 14 / 29 Tetrahedral numbers sequences Lemma 8 > (6k + 1)(3k + 1) if n = 6k; > > (3k + 1)(2k + 1) if n = 6k + 1; > <> (2k + 1)(3k + 2) if n = 6k + 2; I gcd THn;THn+1 = > (3k + 2)(6k + 5) if n = 6k + 3; > > (6k + 5)(k + 1) if n = 6k + 4; > :> (k + 1)(6k + 7) if n = 6k + 5: Lemma 8 > 3k + 1 if n = 6k; > > 2k + 1 if n = 6k + 1; > <> 3k + 2 if n = 6k + 2; I gcd THn;THn+1;THn+2 = > 6k + 5 if n = 6k + 3; > > k + 1 if n = 6k + 4; > :> 6k + 7 if n = 6k + 5: A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 15 / 29 Tetrahedral numbers sequences Proposition I (THn;THn+1;THn+2;THn+3) is telescopic if and only if n ≡ r mod 6 with r 2 f0;1;2;3g. Proposition I (THn+3;THn+2;THn+1;THn) is telescopic if and only if n ≡ r mod 6 with r 2 f4;5g. Proposition 8 n−3 n TH + + nTH + + TH + − TH if n = 6k; > 3 n 1 n 2 2 n 3 n > n−1 n−1 > (n − 1)TH + + TH + + TH + − TH if n = 6k + 1; > n 1 2 n 2 3 n 3 n > n−2 n > (n − 1)TH + + TH + + TH + − TH if n = 6k + 2; I <> n 1 3 n 2 2 n 3 n F(THn;THn+1;THn+2) = > n−3 TH + n−1 TH + (n + 1)TH − TH if n = 6k + 3; > 3 n+1 2 n+2 n+3 n > n+2 n+2 > THn+2 + THn+1 + (n + 2)THn − THn+3 if n = 6k + 4; > 3 2 :> n+1 n+1 (n + 4)THn+2 + 3 THn+1 + 2 THn − THn+3 if n = 6k + 5: A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 16 / 29 Tetrahedral numbers sequences Proposition 8 1 (11n4 + 90n3 + 265n2 + 258n − 36) if n = 6k; > 36 > 1 4 3 2 > (11n + 70n + 133n − 22n − 228) if n = 6k + 1; > 36 > 1 (11n4 + 74n3 + 169n2 + 82n − 132) if n = 6k + 2; I <> 36 F(THn;THn+1;THn+2) = > 1 (11n4 + 102n3 + 373n2 + 570n + 252) if n = 6k + 3; > 36 > > 1 (11n4 + 70n3 + 133n2 − 22n − 228) if n = 6k + 4; > 36 :> 1 4 3 2 36 (11n + 98n + 349n + 526n + 228) if n = 6k + 5: Proposition 8 4 3 2 > 396k + 540k + 265k + 43k − 1 if n = 6k; > > 396k 4 + 684k 3 + 409k 2 + 83k − 1 if n = 6k + 1; > > 396k 4 + 972k 3 + 877k 2 + 333k + 41 if n = 6k + 2; I <> F(THn;THn+1;THn+2) = > 396k 4 + 1404k 3 + 1885k 2 + 1125k + 249 if n = 6k + 3; > > 4 3 2 > 396k + 1476k + 2029k + 1203k + 253 if n = 6k + 4; > :> 396k 4 + 1908k 3 + 3469k 2 + 2811k + 853 if n = 6k + 5: A.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    29 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us