Bibliography

Bibliography

Bibliography Arons, M. E., Han, M. Y., Sudarshan, E. C. G.: [1J Finite quantum electrodynamics: a field theory using an indefinite metric. Phys. Rev. (2) 137, B 1085-B 1104 (1965). Aronszajn, N.: [1] Quadratic forms on vector spaces. In: Proc. Internat. Sympos. Linear Spaces, pp. 29-87. Jerusalem and Oxford: Jerusalem Academic Press and Pergamon 1961. Azizov, T. J a.: [1] The spectra of certain operator classes in Hilbert space. Mat. Zametki 9,303-310 (1971) [Russian]. [2] Invariant subspaces and criteria of completeness for the system of root vectors of J-dissipative operators in the Pontrjagin space II,.. Dokl. Akad. Nauk SSSR 200,1015-1017 (1971) [Russian]. Azizov, T. J a., Iohvidov, 1. S.: [1J A criterion, in order to form a complete system or a basis, for the root vectors of a completely continuous J-selfadjoint operator in the Pontrjagin space II,.. Mat. Issled. 6, no. 1, 158-161 (1971) [Russian]. [2] Linear operators in Hilbert spaces with a G-metric. Uspehi Mat. Nauk 26, no. 4, 43-92 (1971) [Russian]. Berezin, F. A.: [1] On the Lee model. Mat. Sb. 60, 425-446 (1963) [RussianJ. Berge, C.: [1] Espaces topologiques: fonctions multivoques, Paris: Dunod 1959. Bleuler, K.: [1] Eine neue Methode zur Behandlung der longitudinalen und skalaren Photonen. Helvetica Phys. Acta 23,567-586 (1950). Bognar, J. (= Bognar, Ja.): [1] On the existence of square roots of an operator which is self-adjoint with respect to an indefinite metric. Magyar Tud. Akad. Mat. Kutat6 Int. K6zl. 6, 351-363 (1961) [Russian]. [2] On a discontinuity property of the inner product in spaces with indefinite metric. Uspehi Mat. Nauk 17, no. 1, 157-159 (1962) [Russian]. [3] Non-negativity properties of operators in spaces with indefinite metric. Ann. Acad. Sci. Fenn. Ser. A I, no. 336/10 (1963). [4J Certain relations among the non-negativity properties of operators in spaces with an indefinite metric. Magyar Tud. Akad. Mat. Kutat6 Int. K6zl. 8, 201-212 (1963) [Russian]. [5] Certain relations among the non-negativity properties of operators in spaces with an indefinite metric. II. Studia Sci. Math. Hungar. 1, 97-102 (1966) [Russian]. [6] Certain relations among the non-negativity properties of operators in spaces with an indefinite metric. III. Studia Sci. Math. Hungar. 1,419-426 (1966) [Russian]. [7] On decomposition majorants of an indefinite metric. Math. Z. 101, 65-67 (1967). Bibliography 211 Bognar, J.: [8J Involution as operator conjugation. In: Colloquia Math. Soc. Janos Bolyai, Vol. 5, Hilbert space operators and operator algebras, pp. 53 - 64. Amsterdam/London: North-Holland 1972. [9J A remark on doubly strict plus-operators. Mat. Issled. (to appear) [Russian}. Bognar, J., Kramli, A.: [1] Operators of the form C*C in indefinite inner product spaces. Acta Sci. Math. (Szeged) 29,19-29 (1968). Bogoljubov, N. N., Medvedev, B. V., Polivanov, M. K.: [1] On the question of an indefinite metric in quantum field theory. Naucnye Doklady VySSel Skoly, Fiz.-Mat. Nauki (1958), no. 2,137-142 (1958) [RussianJ. Bonsall, F. F.: [1] Indefinitely isometric linear operators in a reflexive Banach space. Quart. J. Math. Oxford Ser. (2) 6, 179-187 (1955). Bourbaki, N.: [1] Elements de mathematique. XV, XVIII, XIX. Espaces vec­ toriels topologiques. Actualites Sci. Ind., nos. 1189, 1229, 1230. Paris: Hermann 1953 and 1955. Brodskil, M. L.: [1] On properties of operators mapping the non-negative part of a space with indefinite metric into itself. Uspehi Mat. Nauk 14, no. 1, 147-152 (1959) [RussianJ. Brodskil, V. M.: [1] Operator colligations and their characteristic functions. Dokl. Akad. Nauk SSSR 198,16-19 (1971) [Russian]. Browder, F. E.: [1] A remark on the Dirichlet problem for non-elliptic self-adjoint partial differential operators. Rend. Circ. Mat. Palermo (2) 6,249-253 (1957). - [2J On the Dirichlet problem for linear non-elliptic partial differential equations. II. Rend. Circ. Mat. Palermo (2) 7,303-308 (1958). Cordes, H. 0.: [lJ On maximal first order partial differential operators. Amer. J. Math. 82, 63-91 (1960). Crandall, M. G., Phillips, R. S.: [1] On the extension problem for dissipative operators. J. Functional Analysis 2,147-176 (1968). Daleckil, J. u. L.: [lJ Differentiation of non-hermitian matrix functions depending on a parameter. Izv. Vyss. Ucebn. Zaved. Matematika 2, 52-64 (1962) [Russian]. Daleckil, J u. L., Fadeeva, E. A. : [lJ Hyperbolic equations with operator coeffi­ cients, and ultra-parabolic systems. Ukrain.Mat. Z. 24,92-95 (1972) [RussianJ. Daleckil, Ju. L., KreIn, M. G.: [lJ The stability of the solutions of differential equations in a Banach space, Moscow: Nauka 1970 [RussianJ. Davis, Ch.: [lJ J-unitary dilation of a general operator. Acta Sci. Math. (Szeged) 31,75-86 (1970). - [2J Dilation of uniformly continuous semi-groups. Rev. Roumaine Math. Pures Appl. 15, 975-983 (1970). Davis, Ch., Foia~, C.: [lJ Operators with bounded characteristic function and their J-unitary dilation. Acta Sci. Math. (Szeged) 32,127-139 (1971). Dirac, P. A. M.: [lJ The physical interpretation of quantum mechanics. Proc. Roy. Soc. London Ser. A 180,1-40 (1942). Dolph, C. L.: [1] Recent developments in some non-self-adjoint problems of mathematical physics. Bull. Amer. Math. Soc. 67,1-69 (1961). Dunford, N., Schwartz, J .T.: [lJ Linear operators. I. General theory, New York/ London: Interscience 1958. Eisenfeld, J.: [1] On symmetrization and roots of quadratic eigenvalue problems. J. Functional Analysis 9, 410-422 (1972). 212 Bibliography Fan, K.: [1J Fixed-point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. U.S.A. 38,121-126 (1952). [2J Invariant subspaces of certain linear operators. Bull. Amer. Math. Soc. 69. 773-777 (1963). [3J Invariant cross-sections and invariant linear subspaces. Israel J. Math. 2, 19-26 (1964). [4J Invariant subspaces for a semi group of linear operators. Indag. Math. 27, 447-451 (1965). [5J Applications of a theorem concerning sets with convex sections. Math. Ann. 163, 189-203 (1966). Fischer, H. R., Gross, H.: [1] Quadratic forms and linear topologies. I. Math. Ann. 157,296-325 (1964). Gerisch, A. (= Geris, A.), Gerisch. vI'. (= Geris, V.): [1J Pontrjagin's space and convergence of the Bubnov-Galerkin method. Dohl. Akad. Nauk SSSR 193. 1218-1221 (1970) [Russian]. Ginzburg, Ju. P.: [1] On J-contractive operator functions. Dokl. Akad. Nauk SSSR 117, 171-173 (1957) [Russian]. [2] On J-contractive operators in Hilbert space. Odess. Gos. Ped. Inst. Nauen. Zap. Fiz.-Mat. Fak. 22, no. 1, 13-20 (1958) [Russian]. [3] Subspaces of a Hilbert space with indefinite metric. Odess. Ped. lnst. Nauen. Zap. Kaf. Mat. Fiz. Estestv. 25. no. 2,3-9 (1961) [Rnssian]. [4] Projections in a Hilbert space with bilinear metric. Dok!. Akad. Nauk SSSR 139.775-778 (1961) [Russian]. Ginzburg. Ju. P., Iohvidov.1. S.: [1] A study of the geometry of infinite-dimensional spaces with bilinear metric. Uspehi Mat. Nauk 17, no.4. 3- 56 (1962) [Russian]. Glazman.1. M .• Ljubie. Ju. 1.: [1] Finite-dimensional linear analysis. Moscow: Nauka 1969 [Russian]. Glicksberg,1. L.: [1] A further generalization of the Kakutani fixed point theorcm. with application to Nash equilibrium points. Proc. ArneI'. Math. Soc. 3.170-174 (1952). Gorbaeuk. M. L.. Slepcova. G. P., Temeenko, M. E.: [1] Stability of motion of a rigid body suspended on a string and filled with fluid. Ukrain. Mat. Z. 20. 586- 602 (1968) [Russian]. Gorbaeuk. V. 1. (= Pljuseeva, V.!.): [1] The integral representation of hermitian­ indefinite matrices with % negative squares. Ukrain. Mat. Z. 14. 30-39 (1962) [Russian]. [2J The integral representation of continuous hermitian-indefinite kernels. Dohl. Akad. Nauk SSSR 145. 534-537 (1962) [Russian]. [3J The integral representation of hermitian-indefinite kernels (the case of several variables). Ukrain. Mat. Z. 16.232-236 (1964) [Russian]. [4J The integral representation of hermitian-indefinite kernels. Ukrain. Mat. Z. 17. no. 3.43-58 (1965) [Russian]. [5] On the uniqueness of the representation of hermitian-indefinite functions and sequences. Ukrain. Mat. Z. 18. no. 2,107-113 (1966) [Russian]. [6] Extensions of a real hermitian-indefinite function with one negative square. Ukrain. Mat. Z. 19. no. 4.119-125 (1967) [Russian]. [7J Self-adjoint extensions of some Hermitian operators in a space with in­ definite metric. In: Colloquia Math. Soc. Janos Bolyai. Vo1.5. Hilbert space operators and operator algebras. pp.265-269. Amsterdam/London: North­ Holland 1972. Bibliography 213 Gorbacuk, V.1., Gorbacuk, M. L.: [lJ Representation of the vacuum-mean of field operators in a space with an indefinite metric. Ukrain. Mat. Z. 18, no. 6, 108-111 (1966) [RussianJ. Greub, W. H.: [1] Linear algebra, 2nd edition, New York and Berlin/G6ttingen/ Heidelberg: Academic Press and Springer 1963. Gupta, S. N.: [1] Theory of longitudinal photons in quantum electrodynamics. Proc. Phys. Soc. Sect. A 63,681-691 (1950). Hackevic, V. A.: [1J Invariant subspaces for certain classes of linear operators in normed spaces with an indefinite metric. Mat. Issled. 6, no. 3, 133-147 (1971) [Russian]. Harazov, D. F.: [1] Symmetrizable operators that do not satisfy the conditions of positive-definiteness, and their applications. Studia Math. 34, 241-252 (1970) [Russian]. Heisenberg, W.: [lJ Erweiterungen des Hilbert-Raums in der Quantentheorie del' Wellenfelder. Z. Physik 144,1-8 (1956). [2] Hilbert space II and the "ghost" states of Pauli and Kallen. Nuovo Cimento (10) 4, supplemento, 743-747 (1956). [3] Lee model and quantisation of non linear field equations. Nuclear Phys. 4, 532-563 (1957). [4J Introduction to the unified field theory of elementary particles, London/ New York/Sydney: Interscience 1966. Helton, J. W.: [1] Unitary operators on a space with an indefinite inner product. J. Fnnctional Analysis 6,412-440 (1970). - [2] Operators unitary in an indefinite metric and linear fractional transforma­ tions.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us