
Bibliography Arons, M. E., Han, M. Y., Sudarshan, E. C. G.: [1J Finite quantum electrodynamics: a field theory using an indefinite metric. Phys. Rev. (2) 137, B 1085-B 1104 (1965). Aronszajn, N.: [1] Quadratic forms on vector spaces. In: Proc. Internat. Sympos. Linear Spaces, pp. 29-87. Jerusalem and Oxford: Jerusalem Academic Press and Pergamon 1961. Azizov, T. J a.: [1] The spectra of certain operator classes in Hilbert space. Mat. Zametki 9,303-310 (1971) [Russian]. [2] Invariant subspaces and criteria of completeness for the system of root vectors of J-dissipative operators in the Pontrjagin space II,.. Dokl. Akad. Nauk SSSR 200,1015-1017 (1971) [Russian]. Azizov, T. J a., Iohvidov, 1. S.: [1J A criterion, in order to form a complete system or a basis, for the root vectors of a completely continuous J-selfadjoint operator in the Pontrjagin space II,.. Mat. Issled. 6, no. 1, 158-161 (1971) [Russian]. [2] Linear operators in Hilbert spaces with a G-metric. Uspehi Mat. Nauk 26, no. 4, 43-92 (1971) [Russian]. Berezin, F. A.: [1] On the Lee model. Mat. Sb. 60, 425-446 (1963) [RussianJ. Berge, C.: [1] Espaces topologiques: fonctions multivoques, Paris: Dunod 1959. Bleuler, K.: [1] Eine neue Methode zur Behandlung der longitudinalen und skalaren Photonen. Helvetica Phys. Acta 23,567-586 (1950). Bognar, J. (= Bognar, Ja.): [1] On the existence of square roots of an operator which is self-adjoint with respect to an indefinite metric. Magyar Tud. Akad. Mat. Kutat6 Int. K6zl. 6, 351-363 (1961) [Russian]. [2] On a discontinuity property of the inner product in spaces with indefinite metric. Uspehi Mat. Nauk 17, no. 1, 157-159 (1962) [Russian]. [3] Non-negativity properties of operators in spaces with indefinite metric. Ann. Acad. Sci. Fenn. Ser. A I, no. 336/10 (1963). [4J Certain relations among the non-negativity properties of operators in spaces with an indefinite metric. Magyar Tud. Akad. Mat. Kutat6 Int. K6zl. 8, 201-212 (1963) [Russian]. [5] Certain relations among the non-negativity properties of operators in spaces with an indefinite metric. II. Studia Sci. Math. Hungar. 1, 97-102 (1966) [Russian]. [6] Certain relations among the non-negativity properties of operators in spaces with an indefinite metric. III. Studia Sci. Math. Hungar. 1,419-426 (1966) [Russian]. [7] On decomposition majorants of an indefinite metric. Math. Z. 101, 65-67 (1967). Bibliography 211 Bognar, J.: [8J Involution as operator conjugation. In: Colloquia Math. Soc. Janos Bolyai, Vol. 5, Hilbert space operators and operator algebras, pp. 53 - 64. Amsterdam/London: North-Holland 1972. [9J A remark on doubly strict plus-operators. Mat. Issled. (to appear) [Russian}. Bognar, J., Kramli, A.: [1] Operators of the form C*C in indefinite inner product spaces. Acta Sci. Math. (Szeged) 29,19-29 (1968). Bogoljubov, N. N., Medvedev, B. V., Polivanov, M. K.: [1] On the question of an indefinite metric in quantum field theory. Naucnye Doklady VySSel Skoly, Fiz.-Mat. Nauki (1958), no. 2,137-142 (1958) [RussianJ. Bonsall, F. F.: [1] Indefinitely isometric linear operators in a reflexive Banach space. Quart. J. Math. Oxford Ser. (2) 6, 179-187 (1955). Bourbaki, N.: [1] Elements de mathematique. XV, XVIII, XIX. Espaces vec­ toriels topologiques. Actualites Sci. Ind., nos. 1189, 1229, 1230. Paris: Hermann 1953 and 1955. Brodskil, M. L.: [1] On properties of operators mapping the non-negative part of a space with indefinite metric into itself. Uspehi Mat. Nauk 14, no. 1, 147-152 (1959) [RussianJ. Brodskil, V. M.: [1] Operator colligations and their characteristic functions. Dokl. Akad. Nauk SSSR 198,16-19 (1971) [Russian]. Browder, F. E.: [1] A remark on the Dirichlet problem for non-elliptic self-adjoint partial differential operators. Rend. Circ. Mat. Palermo (2) 6,249-253 (1957). - [2J On the Dirichlet problem for linear non-elliptic partial differential equations. II. Rend. Circ. Mat. Palermo (2) 7,303-308 (1958). Cordes, H. 0.: [lJ On maximal first order partial differential operators. Amer. J. Math. 82, 63-91 (1960). Crandall, M. G., Phillips, R. S.: [1] On the extension problem for dissipative operators. J. Functional Analysis 2,147-176 (1968). Daleckil, J. u. L.: [lJ Differentiation of non-hermitian matrix functions depending on a parameter. Izv. Vyss. Ucebn. Zaved. Matematika 2, 52-64 (1962) [Russian]. Daleckil, J u. L., Fadeeva, E. A. : [lJ Hyperbolic equations with operator coeffi­ cients, and ultra-parabolic systems. Ukrain.Mat. Z. 24,92-95 (1972) [RussianJ. Daleckil, Ju. L., KreIn, M. G.: [lJ The stability of the solutions of differential equations in a Banach space, Moscow: Nauka 1970 [RussianJ. Davis, Ch.: [lJ J-unitary dilation of a general operator. Acta Sci. Math. (Szeged) 31,75-86 (1970). - [2J Dilation of uniformly continuous semi-groups. Rev. Roumaine Math. Pures Appl. 15, 975-983 (1970). Davis, Ch., Foia~, C.: [lJ Operators with bounded characteristic function and their J-unitary dilation. Acta Sci. Math. (Szeged) 32,127-139 (1971). Dirac, P. A. M.: [lJ The physical interpretation of quantum mechanics. Proc. Roy. Soc. London Ser. A 180,1-40 (1942). Dolph, C. L.: [1] Recent developments in some non-self-adjoint problems of mathematical physics. Bull. Amer. Math. Soc. 67,1-69 (1961). Dunford, N., Schwartz, J .T.: [lJ Linear operators. I. General theory, New York/ London: Interscience 1958. Eisenfeld, J.: [1] On symmetrization and roots of quadratic eigenvalue problems. J. Functional Analysis 9, 410-422 (1972). 212 Bibliography Fan, K.: [1J Fixed-point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. U.S.A. 38,121-126 (1952). [2J Invariant subspaces of certain linear operators. Bull. Amer. Math. Soc. 69. 773-777 (1963). [3J Invariant cross-sections and invariant linear subspaces. Israel J. Math. 2, 19-26 (1964). [4J Invariant subspaces for a semi group of linear operators. Indag. Math. 27, 447-451 (1965). [5J Applications of a theorem concerning sets with convex sections. Math. Ann. 163, 189-203 (1966). Fischer, H. R., Gross, H.: [1] Quadratic forms and linear topologies. I. Math. Ann. 157,296-325 (1964). Gerisch, A. (= Geris, A.), Gerisch. vI'. (= Geris, V.): [1J Pontrjagin's space and convergence of the Bubnov-Galerkin method. Dohl. Akad. Nauk SSSR 193. 1218-1221 (1970) [Russian]. Ginzburg, Ju. P.: [1] On J-contractive operator functions. Dokl. Akad. Nauk SSSR 117, 171-173 (1957) [Russian]. [2] On J-contractive operators in Hilbert space. Odess. Gos. Ped. Inst. Nauen. Zap. Fiz.-Mat. Fak. 22, no. 1, 13-20 (1958) [Russian]. [3] Subspaces of a Hilbert space with indefinite metric. Odess. Ped. lnst. Nauen. Zap. Kaf. Mat. Fiz. Estestv. 25. no. 2,3-9 (1961) [Rnssian]. [4] Projections in a Hilbert space with bilinear metric. Dok!. Akad. Nauk SSSR 139.775-778 (1961) [Russian]. Ginzburg. Ju. P., Iohvidov.1. S.: [1] A study of the geometry of infinite-dimensional spaces with bilinear metric. Uspehi Mat. Nauk 17, no.4. 3- 56 (1962) [Russian]. Glazman.1. M .• Ljubie. Ju. 1.: [1] Finite-dimensional linear analysis. Moscow: Nauka 1969 [Russian]. Glicksberg,1. L.: [1] A further generalization of the Kakutani fixed point theorcm. with application to Nash equilibrium points. Proc. ArneI'. Math. Soc. 3.170-174 (1952). Gorbaeuk. M. L.. Slepcova. G. P., Temeenko, M. E.: [1] Stability of motion of a rigid body suspended on a string and filled with fluid. Ukrain. Mat. Z. 20. 586- 602 (1968) [Russian]. Gorbaeuk. V. 1. (= Pljuseeva, V.!.): [1] The integral representation of hermitian­ indefinite matrices with % negative squares. Ukrain. Mat. Z. 14. 30-39 (1962) [Russian]. [2J The integral representation of continuous hermitian-indefinite kernels. Dohl. Akad. Nauk SSSR 145. 534-537 (1962) [Russian]. [3J The integral representation of hermitian-indefinite kernels (the case of several variables). Ukrain. Mat. Z. 16.232-236 (1964) [Russian]. [4J The integral representation of hermitian-indefinite kernels. Ukrain. Mat. Z. 17. no. 3.43-58 (1965) [Russian]. [5] On the uniqueness of the representation of hermitian-indefinite functions and sequences. Ukrain. Mat. Z. 18. no. 2,107-113 (1966) [Russian]. [6] Extensions of a real hermitian-indefinite function with one negative square. Ukrain. Mat. Z. 19. no. 4.119-125 (1967) [Russian]. [7J Self-adjoint extensions of some Hermitian operators in a space with in­ definite metric. In: Colloquia Math. Soc. Janos Bolyai. Vo1.5. Hilbert space operators and operator algebras. pp.265-269. Amsterdam/London: North­ Holland 1972. Bibliography 213 Gorbacuk, V.1., Gorbacuk, M. L.: [lJ Representation of the vacuum-mean of field operators in a space with an indefinite metric. Ukrain. Mat. Z. 18, no. 6, 108-111 (1966) [RussianJ. Greub, W. H.: [1] Linear algebra, 2nd edition, New York and Berlin/G6ttingen/ Heidelberg: Academic Press and Springer 1963. Gupta, S. N.: [1] Theory of longitudinal photons in quantum electrodynamics. Proc. Phys. Soc. Sect. A 63,681-691 (1950). Hackevic, V. A.: [1J Invariant subspaces for certain classes of linear operators in normed spaces with an indefinite metric. Mat. Issled. 6, no. 3, 133-147 (1971) [Russian]. Harazov, D. F.: [1] Symmetrizable operators that do not satisfy the conditions of positive-definiteness, and their applications. Studia Math. 34, 241-252 (1970) [Russian]. Heisenberg, W.: [lJ Erweiterungen des Hilbert-Raums in der Quantentheorie del' Wellenfelder. Z. Physik 144,1-8 (1956). [2] Hilbert space II and the "ghost" states of Pauli and Kallen. Nuovo Cimento (10) 4, supplemento, 743-747 (1956). [3] Lee model and quantisation of non linear field equations. Nuclear Phys. 4, 532-563 (1957). [4J Introduction to the unified field theory of elementary particles, London/ New York/Sydney: Interscience 1966. Helton, J. W.: [1] Unitary operators on a space with an indefinite inner product. J. Fnnctional Analysis 6,412-440 (1970). - [2] Operators unitary in an indefinite metric and linear fractional transforma­ tions.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages17 Page
-
File Size-