Control of Phytoplankton Growth: Nitrogen, Phosphorus, Or Grazers?

Control of Phytoplankton Growth: Nitrogen, Phosphorus, Or Grazers?

Control of Phytoplankton Growth: Nitrogen, Phosphorus, or Grazers? •David Wong1, Nancy N Rabalais2,3, R. Eugene Turner3, Ling Ren4 •1.Massachusetts Department of Environmental Protection •2.Louisiana Universities Marine Consortium •3.Louisiana State University •4.George Mason University Primary production (P): P Growth t Mortality Advectionx, y,z Diffusionx, y,z Sinking •Frost 1991 Phytoplankton Growth Control in Lakes • Bottom-up Control: Nutrient Limitation on Phytoplankton Growth • Top-down Control: Microzooplankton, mesozooplankton, and Bivalves Upper •New Orleans Barataria Basin •Davis Pond Diversion •Lac des Allemands •Lake •Cataouatche •Lake Salvador Phytoplankton Growth Control • Bottom-up Control: Nutrient Limitation on Phytoplankton Growth • Top-down Control: Microzooplankton, mesozooplankton, and Bivalves Experimental Lakes • Lac des Allemands • Lake Salvador • Lake Cataouatche •Wong et al. 2016 The physical conditions during the experiments: ambient lake salinity and Secchi disk depth, experiment duration •Ren et al. 2009 Nutrient Limitation Experiments • +N • +P, • +Si • +N+P • +N+Si • +P+Si • +N+P+Si • Control Nutrient Limitation Experiments • Nitrite+Nitrate • Phosphate • Ammonium • Silicate • Chl a • Phytoplankton Identification • Phytoplankton Enumeration • Suspended Particulate Matter • Samples taken at Time 0h, 6h, 12h, • Temp and 24h, • Solar Radiation • Every 24h after the first day and ended when Chl a started to • Light Intensity decrease The initial concentration of chlorophyll a (Chla), SPM, nutrients in lake waters, and the added nutrients in the bioassay experiments •Ren et al. 2009 Composition of phytoplankton (biovolume %) •Ren et al. 2009 Lake Cataouatche Lake Salvador Lac des Allemands The changes in Chl a concentration in response to N additions were different for all experiments •Ren et al. 2009 Five bioassays with N additions ( N, N + P, N + Si, and N+P+Si) • The concentration of Chl a increased significantly after N additions (i.e., after adding N, N + P, N + Si, and N+P+Si) • The addition of +Si,+P, and Si+P did not result in an increase in Chl a • N was the only limiting nutrient for phytoplankton growth in these five experiments Lake Cataouatche Lake Salvador Lac des Allemands The changes in Chl a concentration in response to N+P but More strongly By N than P Because +P Alone did not stimulate Additional growth •Ren et al. 2009 Lake Cataouatche Lake Salvador Lac des Allemands The addition of P Only resulted in marginally elevated Chl a concentration (P = 0.03) but was much less than N Additions (P < 0.001) •Ren et al. 2009 Chl a responses to nutrient additions and the results of nutrient limitation from bioassays +N > +P > +Si +N > +P > +N+P +N+P > Lakes Date Control Control >Control +P +N >+N +P Limitation Cataouatche 3-Oct y – – y – – y N 4-Jan y – – y – y y N+P 4-Apr y – – y – y y N+P 4-Jul y – – y – y y N+P Salvador 3-Oct y – – y – – y N 4-Jan y P=0.03 – y – – y N,P 4-Apr y – – y – y y N+P 4-Jul y – – y – – y N des Allemands 3-Oct y – – y – – y N 4-Jan y P=0.03 – y – – y N,P 4-Apr y – – y – y y N+P 4-Jul y – – y – – y N •Ren et al. 2009 Chl a responses to nutrient additions and the results of nutrient limitation from bioassays Nutrient Lakes deficiency Ndef Pdef Ndef/Pdef Cataouatche 6.9 0.6 12 4.9 3.2 1.5 3.5 0.9 3.5 5.2 3.2 1.6 Salvador 6.2 0.4 16 0.6 0.2 3 6.1 5.1 1.2 5.6 0.04 140 des •Ren et al. 2009 Allemands 1.3 0.02 65 0.2 0.04 5 1.1 0.3 3.4 0.9 0.07 12 The Nutrient Limitation Experiments • The results of these bioassays show that the phytoplankton growth in the lakes in upper Barataria Basin are primarily N- limited • P colimitation occurs - when it does, P is a secondary limiting nutrient Phytoplankton Growth Control • Bottom-up Control: Nutrient Limitation on Phytoplankton Growth • Top-down Control: Microzooplankton, mesozooplankton, and Bivalves Grazers Flagellates Ciliates Pelagic Community Rotifers Copepods Cladocerans Meroplankton larvae Bivalve molluscs Sponges Benthic Community Corals Cnidarians Tunicates Top-Down Control by Grazers • Microzooplankton • Mesozooplankton • Benthic grazer: Rangia clam Microzooplankton (< 200 µm) Microzooplankton Grazing Experiment Dilution Method (Landry et al. 1998) 202 m 0.2 m P = P e ( - m)t screened filtered t 0 water water - m = 1/t Ln (Pt / P0) 100 % 0% 1/t Ln (Pt / P0) = - m D + Dilution 100% 0% D: Dilution factor 50% 50% m: Microzooplankton Incubation 25% 75% grazing : Phytoplankton growth 12.5% 87.5% rate 6.25% 93.75% Lake Cataouatche Season Phytoplankton size Line R N P value Grazing rate (day -1) Fall 2003 < 5 micro y = -0.33x + 0.72 0.69 24 <0.01 0.33 5-20 micro * 0 > 20 micro * 0 Total phytoplankton y = -0.07x + 0.88 0.44 24 <0.01 0.07 Winter 2004 < 5 micro y = -0.57x + 0.35 0.77 24 <0.01 0.57 5-20 micro * 0 > 20 micro * 0 Total phytoplankton y = -0.22x + 0.34 0.84 24 <0.01 0.23 Spring 2004 < 5 micro ** 0.23 5-20 micro ** 0.67 > 20 micro * 0 Total phytoplankton * 0 Summer 2004 < 5 micro * 0 5-20 micro y = -0.90x + 1.84 0.84 24 <0.01 0.91 > 20 micro * 0 Total phytoplankton ** 0.04 Wong et al. 2016 Lake Salvador Season Phytoplankton size Line R N P value Grazing rate (day -1) Fall 2003 < 5 micro y = -0.85x + 0.85 0.87 24 <0.01 0.85 5-20 micro y = -0.34x + 1.02 0.74 24 <0.01 0.34 > 20 micro y = -0.19x + 0.10 0.44 24 <0.01 0.19 Total phytoplankton y = -0.63x + 0.89 0.89 24 <0.01 0.63 Winter 2004 < 5 micro y = -0.74x + 0.30 0.84 24 <0.01 0.74 5-20 micro * 0 > 20 micro y = -0.18x + 0.43 0.55 24 <0.01 0.18 Total phytoplankton y = -0.16x + 0.26 0.69 24 <0.01 0.16 Spring 2004 < 5 micro y = -0.46x + 0.47 0.52 24 <0.01 0.46 5-20 micro * 0 > 20 micro y = -0.64x + 0.89 0.54 24 <0.01 0.64 Total phytoplankton y = -0.44x + 0.97 0.85 24 <0.01 0.44 Summer 2004 < 5 micro y = -0.56x + 1.30 0.95 24 <0.01 0.56 5-20 micro y = -0.37x + 1.63 0.81 24 <0.01 0.37 > 20 micro y = -0.44x + 1.39 0.73 24 <0.01 0.44 Total phytoplankton y = -0.47x + 1.39 0.95 24 <0.01 0.47 Wong et al. 2016 Lac des Allemands Season Phytoplankton size Line R N P value Grazing rate (day -1) Fall 2003 < 5 micro y = -0.18x + 0.74 0.49 24 <0.01 0.18 5-20 micro y = -0.36x + 0.85 0.85 24 <0.01 0.36 > 20 micro y = -0.37x + 0.73 0.54 24 <0.01 0.37 Total phytoplankton y = -0.23x + 0.75 0.87 24 <0.01 0.23 Winter 2004 < 5 micro * 0 5-20 micro * 0 > 20 micro * 0 Total phytoplankton * 0 Spring 2004 < 5 micro y = -0.31x + 0.15 0.84 24 <0.01 0.31 5-20 micro * 0 > 20 micro * 0 Total phytoplankton y = -0.14x + 0.12 0.75 24 <0.01 0.14 Summer 2004 < 5 micro * 0 5-20 micro * 0 > 20 micro * 0 Total phytoplankton * 0 Wong et al. 2016 Microzooplankton Grazing Rate ) 0.5 -1 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 Microzooplankton grazing rate (day rate grazing Microzooplankton 0 < 5 micro 5 - 20 micro > 20 micro Wong et al. 2016 •0.5 •Instantaneous growth rate • Apparent growth rate •0.4 •0.3 c ) • 1 - • •0.2 b •0.1 •0 Growth rate (day rate Growth • •-0.1 < 5 m •-0.2 5 - 20 m •-0.3 > 20 m a •-0.4 Phytoplankton size composition 80 70 60 < 5 micro 50 40 5-20 micro 30 20 Percentage (%) Percentage 10 > 20 micro 0 0 50 100 150 200 Chlorophyll a (microgram l -1) Wong et al. 2016 Selective grazing by microzooplankton (Hansen et al. 1994) The size ratio between planktonic predators (Rotifers between 50 to 200 micro) and their preys (Phytoplankton) 18 : 1 Phytoplankton between 2.5 to 12 micro will be mostly consumed < 5 micro and 5 – 20 micro were impacted > 20 micro no significant impact Grazing on phytoplankton 1.0 < 5 m 0.8 Y = 0.44 X + 0.25 ) 1 - 5-20 m 0.6 Y = 0.53 X + 0.05 0.4 > 20 m Not Significant 0.2 Grazing rate (d rateGrazing Total phytoplankton 0.0 Y = 0.29 X + 0.14 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Instantaneous phytoplankton growth rate (d-1) Mesozooplankton (> 200µm) Mesozooplankton Grazing 1.8 2.5 ) ) < 5 micro -1 -1 1.6 Plot 1 Regr 5-20 micro 2.0 1.4 > 20 micro Total phytoplankton 1.2 1.5 1.0 0.8 1.0 0.6 0.5 0.4 0.2 0.0 0.0 Phytoplankton apparent growth rate (d rate growthapparent Phytoplankton Phytoplankton apparentgrowth rate (d -0.2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Zooplankton density (x Natural density) Zooplankton density (x Natural density) Lac des Allemands Lake Salvador Wong et al.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    50 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us