Fourier Transforms

Fourier Transforms

2-D Fourier Transforms Yao Wang Polytechnic University, Brooklyn, NY 11201 With contribution from Zhu Liu, Onur Guleryuz, and Gonzalez/Woods, Digital Image Processing, 2ed Lecture Outline • Continuous Fourier Transform (FT) – 1D FT (review) – 2D FT • Fourier Transform for Discrete Time Sequence (DTFT) – 1D DTFT (review) – 2D DTFT • Linear Convo lu tion – 1D, Continuous vs. discrete signals (review) – 2D • Filter Design • Computer Implementation Yao Wang, NYU-Poly EL5123: Fourier Transform 2 What is a transform? • Transforms are decompositions of a function f(x) into some basis functions Ø(x, u). u is typically the freq. index. Yao Wang, NYU-Poly EL5123: Fourier Transform 3 Illustration of Decomposition Φ3 f α3 f = α1Φ1+α2Φ2+α3Φ3 o α2 Φ2 α1 Φ1 Yao Wang, NYU-Poly EL5123: Fourier Transform 4 Decomposition • Ortho-normal basis function 1, u1 u2 (x,u1) *(x,u2 )dx 0, u1 u2 • Forward * Projection of F(u) f (x),(x,u) f (x) (x,u)dx f(x) onto (x,u) • Inverse Representing f(x) as sum of f (x) F(u)(x,u)du (x,u) for all u, with weight F(u) Yao Wang, NYU-Poly EL5123: Fourier Transform 5 Fourier Transform • Basis function (x,u) e j2ux , u ,. • Forward Transform F(u) F{ f (x)} f (x)e j2uxdx • Inverse Transform f (x) F 1{F(u)} F(u)e j2uxdu Yao Wang, NYU-Poly EL5123: Fourier Transform 6 Important Transform Pairs f (x) 1 F(u) (u) j2f0x f (x) e F(u) (u f0 ) 1 f (x) cos(2f x) F(u) (u f ) (u f ) 0 2 0 0 1 f (x) sin(2f x) F(u) (u f ) (u f ) 0 2 j 0 0 1, x x0 sin(2x0u) f (x) F(u) 2x0 sinc(2x0u) 0, otherwise u sin(t) where, sinc(t) t Derive the last transform pair in class Yao Wang, NYU-Poly EL5123: Fourier Transform 7 FT of the Rectangle Function sin(2x u) sin(t) F(u) 0 2x sinc(2x u) where, sinc(t) u 0 0 t f(x) f(x) x =2 x0=1 0 -1 1 x -2 2 x Note first zero occurs at u0=1/(2 x0)=1/pulse-width, other zeros are multiples of this. Yao Wang, NYU-Poly EL5123: Fourier Transform 8 IFT of Ideal Low Pass Signal • What is f(x)? F(u) -u0 u0 u Yao Wang, NYU-Poly EL5123: Fourier Transform 9 Representation of FT • Generally, both f(x) and F(u) are complex • Two representations – Real and Imaginary F(u) R(u) jI(u) – Magnitude and Phase j (u) F(u) A(u)e , where I F(u) I(u) I(u) A(u) R(u)2 I(u)2 , (u) tan 1 R(u) Φ(u) R(u) R • Relationship R(u) A(u)cos(u), I(u) A(u)sin(u) • Power spectrum P(u) A(u)2 F(u) F(u)* F(u) 2 Yao Wang, NYU-Poly EL5123: Fourier Transform 10 What if f(x) is real? • Real world signals f(x) are usually real • F(u) is still complex, but has special properties F * (u) F(u) R(u) R(u), A(u) A(u), P(u) P(u) : even function I(u) I(u),(u) (u) :odd function Yao Wang, NYU-Poly EL5123: Fourier Transform 11 Property of Fourier Transform • Duality f (t) F(u) F(t) f (u) • Linearity Fa1 f1(x) a2 f2 (x) a1F{ f1(x)} a2 F{ f2 (x)} • SliScaling Faf (x) aF{ f (x)} • Translation j2x0u j2u0 x f (x x0 ) F(u)e , f (x)e F(u u0 ) • Convolution f (x) g(x) f (x )g()d f (x) g(x) F(u)G(u) We will review convolution later! Yao Wang, NYU-Poly EL5123: Fourier Transform 12 Two Dimension Fourier Transform • Basis functions (x, y;u,v) e j(2ux2vy) e j2uxe j2vy , u,v ,. • Forward – Transform F(u,v) F{ f (x, y)} f (x, y)e j2 (uxvy)dxdy • Inverse – Transform f (x, y) F 1{F(u,v)} F(u,v)e j2 (uxvy)dudv • PtProperty – All the properties of 1D FT apply to 2D FT Yao Wang, NYU-Poly EL5123: Fourier Transform 13 Example 1 f (x, y) sin 4x cos6y f(x,y) F{sin 4x} sin 4xe j2 (uxvy)dxdy sin4xe j2uxdx e j2vydy sin4xe j2uxdx (v) 1 ( (u 2) (u 2)) (v) 2 j 1 ( (u 2,v) (u 2,v)) 2 j u F(u,v) , x y 0 where (x, y) (x) (y) 0, otherwise v 1 Likewise, F{cos6y} ( (u,v 3) (u,v 3)) 2 Yao Wang, NYU-Poly EL5123: Fourier Transform 14 Example 2 1 f (x, y) sin(2x 3y) e j(2x3y) e j(2x3y) 2 j Fe j(2x3y) e j(2x3y)e j2 (xu yv)dxdy e j2xe j2uxdx e j3ye j2yvdy 3 3 (u 1) (v ) (u 1,v ) [X, Y]=meshgrid(-2:1/16:2,-2:1/16:2); 2 2 f=sin(2*pi*X+3*pi*Y); 3 imagesc(f); colormap(gray) Likewise, Fe j(2x3y) (u 1,v ) Truesize, axis off; 2 Thfherefore, 1 3 3 u Fsin(2x 3y) (u 1,v ) (u 1,v ) F(u,v) 2 j 2 2 v Yao Wang, NYU-Poly EL5123: Fourier Transform 15 Important Transform Pairs 1 sin(2f x 2f y) (u f ,v f ) (u f ,v f ) x y 2 j x y x y 1 cos(2f x 2f y) (u f ,v f ) (u f ,v f ) x y 2 x y x y 2D rectangular function 2D sinc function Yao Wang, NYU-Poly EL5123: Fourier Transform 16 Properties of 2D FT (1) • Linearity Fa1 f1(x, y) a2 f2 (x, y) a1F{ f1(x, y)} a2 F{ f2 (x, y)} • Translation j2 (x0u y0v) f (x x0 , y y0 ) F(u,v)e , j2 (u0 xv0y) f (x, y)e F(u u0 ,v v0 ) • Conjugation f * (x, y) F * (u,v) Yao Wang, NYU-Poly EL5123: Fourier Transform 17 Properties of 2D FT (2) • Symmetry f (x, y) is real F(u,v) F(u,v) • Convolution – Definition of convolution f (x, y) g(x, y) f (x , y )g(, )dd – Convolution theory f (x, y) g(x, y) F(u,v)G(u,v) We will describe 2D convolution later! Yao Wang, NYU-Poly EL5123: Fourier Transform 18 Separability of 2D FT and Separable Signal • Separability of 2D FT F2{ f (x, y)} Fy{Fx{ f (x, y)}} Fx{Fy{ f (x, y)}} – where Fx, Fy are 1D FT along x and y. – one can do 1DFT for each row of original image, then 1D FT along each column of resulting image • Separable Signal – f(x,y) = fx(x)fy(y) – F(()u,v) = Fx(()u)Fy(()v), • where Fx(u) = Fx{fx(x)}, Fy(u) = Fy{fy(y)} – For separable signal, one can simply compute two 1D transforms! Yao Wang, NYU-Poly EL5123: Fourier Transform 19 Example 1 f (x, y) sin(3x)cos(5y) 1 f (x) sin(3x) F (u) (u 3/ 2) (u 3/ 2) x x 2 j 1 f (y) cos(5y) F (v) (v 5/ 2) (v 5/ 2) y y 2 F(u,v) Fx(u)Fy(v) 1 3 5 3 5 3 5 3 5 (u ,v ) (u ,v ) (u ,v ) (u ,v ) 4 j 2 2 2 2 2 2 2 2 u v Yao Wang, NYU-Poly EL5123: Fourier Transform 20 Example 2 1, | x | x0 ,| y | y0 f (x, y) 0, otherwise F(u,v) 4x0 y0 sinc(2x0u)sinc(2y0v) x 2 u x0 = 2 y0 = 1 v -1 1 y -2 w/ logrithmic mapping Yao Wang, NYU-Poly EL5123: Fourier Transform 21 Rotation • Let x r cos, y r sin, u cos, v sin. • 2D FT in polar coordinate (r, θ) and (ρ, Ø) 2 F(,) f (r, )e j2 (r cos cos r sin sin )rdrd 00 f (r, )e j2r cos( )rdrd • Property f (r, 0 ) F(, 0 ) Yao Wang, NYU-Poly EL5123: Fourier Transform 22 Example of Rotation Yao Wang, NYU-Poly EL5123: Fourier Transform 23 Fourier Transform For Discrete Time Sequence (DTFT) • One Dimensional DTFT – f(n) is a 1D discrete time sequence – Forward Transform F(u) i s peri o dic in u, w ith per io d j2un F(u) f (n)e of 1 n – ITfInverse Transform 1/ 2 f (n) F(u)e j2undu 1/ 2 Yao Wang, NYU-Poly EL5123: Fourier Transform 24 Properties unique for DTFT • Periodicity – F(u) = F(u+1) – The FT of a discrete time sequence is only considered for u є (-½ , ½)andu=½), and u = +½isthe½ is the highest discrete frequency • Symmetry for real sequences f (n) f * (n) F(u) F * (u) F(u) F(u) F(u) is symmetric Yao Wang, NYU-Poly EL5123: Fourier Transform 25 Example 1, n 0,1,..., N 1; f (n) 0, others N 1 1 e j2uN sin 2u(N / 2) F(u) e j2nu e j (N 1)u j2u sin 2u(1/ 2) n0 1 e f(n) 0 N-1 n N=10 There are N/2 zeros in (0, ½], 1/N apart Yao Wang, NYU-Poly EL5123: Fourier Transform 26 Two Dimensional DTFT • Let f(m,n) represent a 2D sequence • Forward Transform F(u,v) f (m,n)e j2 (munv) m n • Inverse Transform 1/ 2 1/ 2 f (m,n) F(u,v)e j2 (munv)dudv 1/ 2 1/ 2 • Properties – Periodicity, Shifting and Modulation, Energy Conservation Yao Wang, NYU-Poly EL5123: Fourier Transform 27 Periodicity F(u,v) f (m,n)e j2 (munv) mn • F(u,v) is periodic in u, v with period 1, i.e., for all integers k, l: – F(u+k, v+l) = F(u, v) • To see this consider e j2 (m(uk )n(vl)) e j2 (munv)e j2 (mk nl) e j2 (munv) In MATLAB, frequency scaling is such that 1 represents maximum freq u,v=1/2.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    66 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us