Daniell Cell, the Half Cells Are Zn/Zn++ and Cu++/Cu

Daniell Cell, the Half Cells Are Zn/Zn++ and Cu++/Cu

"Symbolic representation of cells " The cell is represented by keeping in view the following points: 1- It is customary to write the anode of the cell on the left and the cathode to the right. 2- In a cell, there are two electrodes. Each of the electrodes in contact with its ions is called a single electrode or half cell. In the Daniell cell, the half cells are Zn/Zn++ and Cu++/Cu. 3- A salt bridge is indicated by two vertical lines separating the two half cells. 4- if two electrolytes are in contact and no salt bridge is used a single vertical line is used to separate their symbols. 5- Subscripts may be used to indicate to the nature of the electrolyte such as ( ) ( ) Daniell cell A Daniell cell is a zinc-copper cell that can be represented by Zn/ZnSo4 // CuSo4/Cu In a Daniell cell, a zinc rod partially immersed in a ZnSo4 solution and a copper rod in a CuSo4 solution are the two electrodes. The two solutions are separated by a porous barrier that allows the ions to pass through but prevents mass diffusion. A current begins to flow through the outer circuit when the two electrodes are joined with the help of copper wire. At the anode: the zinc – electrode were zinc give up its electrons, that is oxidation occurs, is the anode or negative electrode of the cell. At the Cathode: The electrons that were released at the anode move along the external circuit and are used up at the Cathode or the positive electrode (Copper electrode), where copper ions take up electrons to give copper metal. Reduction takes place at the cathode. Cu++ + Because the electrons flow from the zinc rod toward the copper rod, the electrical energy is produced. The cell reaction is Zn + Cu++ . fig(1):Daniell cell Thus the Daniell cell can be represented as /C ( ) ( ) Concentrations may be mentioned in brackets. Reference electrodes and determination of pH: The reference electrode is an electrode of standard potential, with which we can compare the potentials of other electrodes. Reference electrodes are classified into two types: Primary Reference Electrode: standard hydrogen electrode is the primary reference electrode. The emf of such a cell has arbitrarily been fixed at zero. A hydrogen electrode may be employed to find the pH value of an unknown solution. The solution, whose pH is to be determined, is taken in a vessel, and a platinum electrode is half dipped in it. A slow current of hydrogen gas at 1 atmosphere is bubbled through the solution. The platinum catalyzes the reaction. ( ) ( ) This reaction develops a definite potential at the electrode, depending on the H+ ion concentration of the solution under test. [ ] [ ( )] [ ] ( ) [ ( )] [ ( )] Fig. (2): Normal hydrogen electrode The preceding half-cell so formed is connected to a standard or normal hydrogen electrode (i.e., having a solution of 1N HCl). The two solutions are separated by a salt bridge to eliminate the liquid junction potential. The emf of a full cell is then determined by using a potentiometer. With the emf of the reference electrode being zero, the observed emf directly supplies the emf of the half-cell containing the solution that is being tested (Fig. 3). .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us